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Problemas parabólicos no lineales
provenientes de modelos financieros:
existencia y aproximación numérica

de las soluciones
(Resumen)

En la presente tesis estudiamos dos problemas nolineales que se obtienen luego de realizar
variaciones en la teoŕıa estandar de valuación de activos financieros. Especificamente, con-
sideramos modelos que incluyan los costos de transacción en su derivación y presentamos las
ecuaciones diferenciales en derivadas parciales correspondientes. Una vez determinadas las
ecuaciones, estudiamos la existencia de solución utilizando dos metodoloǵıas. En la Sección
2 demostramos la existencia de por lo menos una solucion débil viscosa utilizando el método
de Perron. En la Sección 3, probamos la existencia de solución usando el Teorema de punto
fijo de Schauder. En una segunda instancia nos abocamos a desarrollar esquemas numericos
para estudiar el comportamiento de las soluciones en diversos escenarios. Para ello, utilizamos
el método de Alternating Direction Implicit (ADI) en la primera sección y desarrollamos un
esquema numerico con una cuadricula no uniforme en la segunda. Finalmente, estudiamos el
comportamiento de las soluciones ante la presencia de diversos escenarios financieros y anal-
izamos como las modificaciones hechas en la teoŕıa afectan la valuación final de un activo
financiero.

Palabras clave: Ecuaciones diferenciales parabólicas no lineales, modelos de val-
uación de opciones, Modelo de Leland, Teorema de punto fijo de Schauder, Es-
quema ADI, CVA, Método de Perron.
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Nonlinear parabolic problems
arising in finance: existence and

numerical approximation of
solutions

(Abstract)

In this thesis we studied different nonlinear problems that arise from making variations to the
standard option pricing theory. Specifically, we considered models which allow the presence
of transaction costs and presented the differential equations that explained those dynamics.
After determining the corresponding equations, we applied two different methods to prove
the existence of solution. In Section 2, we prove the existence of at least on weak viscosity
solution using Perron’s method. In Section 3, we prove the existence of solution by using the
Schauder’s Fixed Point theorem. The second part of these works involved developing different
numerical schemes to effectively find a solution and analyze the its dynamics under a wide
range of scenarios. For this purpose, we used an Alternating Direction Implicit (ADI) scheme
in the first Section and an Euler scheme with a non-uniform grid in the second one. Finally, we
studied the behaviour of these solutions under the presence of different financial scenarios and
analyzed how the variation of the standard theory affects the pricing of a financial instrument.

Keywords: Nonlinear parabolic differential equations, option pricing models,
Leland’s model, Schauder’s fixed point theorem, ADI scheme, CVA, Perron’s
method.
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Introducción

Las matemáticas y las finanzas son dos campos de estudio altamente conectados. En partic-
ular, el problema de encontrar el precio óptimo de cualquier instrumento financiero resulta
ser una tarea desafiante la cual generalmente es resuelta utilizando distintas técnicas y her-
ramientas matemáticas. Por ejemplo, la dinámica el precio de una acción, la tasa de interés,
la volatilidad de una acción y la correlación entre dos activos pueden ser modelados usando
movimientos brownianos con drift. Otro ejemplo posible corresponde a los pasos que se apli-
can para deducir el modelo que explica el precio una opción. En ese contexto, se utilizan
diferentes herramientas probabiĺısticas como por ejemplo el teorema de representación de
martingalas y el teorema de Girsanov. Además, la deducción de estos modelos generalmente
llevan a diferentes tipos de ecuaciones diferenciales parabólicas.

El objetivo de esta tesis es generalizar dos tipos de modelos financieros muy estudiados en
la literatura mediante la relajación de un supuesto clave: la ausencia de costos de transacción
al construir el portfolio replicante.

El primer modelo estudiado corresponde al modelo de valuación de opciones estandar el
cual, en su forma original, es el modelo de Black-Scholes. Este modelo expresa la dinámica de
una opción financiera sobre un activo subyacente. Aśı mismo, se basa en múltiples supuestos
que generalmente no aplican en el mundo real. Nuestra generalización se aplica desde dos lados
distintos. Primero, proponemos un modelo multidimensional con N activos subyacentes. Este
tipo de generalización ya ha sido estudiada en el pasado y conduce una ecuación diferencial
lineal parabólica multidimensional. Nuestra segunda observación se basa en relajación del
supuesto de ausencia de costos de transacción. La inclusión de los mencionados costos afecta
fuertemente el modelo original dado que aparece un termino no lineal en la ecuación resultante.
Dependiendo de la forma que tenga la función de costos de transacción, la no linealidad podra
ser de tipo quasilinear, semilinear or fully nonlinear. Dado que nosotros proponemos una
función de costos de transacción que cubre todos los casos factibles, deducimos una ecuación
no lineal de tipo fully nonlinear. En nuestro primer trabajo Ref [7] deducimos este problema
general a partir del modelo básico de Black-Scholes en combinación con otras técnicas usadas
previamente en distintos trabajos como [4], Ref [20], Ref [33], Ref [39], Ref [45] and Ref [46].
En esta tesis presentamos estos pasos en la Sección 2.2.

Dada la naturaleza no lineal de la ecuación diferencial, decidimos buscar soluciones de tipo
viscosas. Estas soluciones corresponden a un tipo de soluciones débiles y suelen encontrarse
luego de plantear un par de sub y supersoluciones viscosas. Partiendo de que el correspon-
diente problema lineal tiene solución, derivamos del mismo el par de sub y supersoluciones.
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Luego, utilizamos el método de Perron para garantizar la existencia de una solución viscosa.

Nuestro primer trabajo concluye con el desarrollo de un esquema numérico para encontrar
una solución aproximada del problema no lineal y entender como los costos de transacción
afectan el precio de una opción. Dado que trabajamos en un problema multidimensional,
aplicamos un tipo de splitting operator conocido como Alternating Direction Implicit (ADI).
Esta técnica termina siendo útil para nuestro problema por la existencia de derivadas segundas
cruzadas. Esto genera una imposibilidad de resolver problemas tridiagonales y ralentizan el
posterior hallazgo de la solución. Finalmente, dado el esquema numérico desarrollado y tres
diferentes escenarios de prueba, nos focalizamos en tres distintos análisis: medir el impacto
de los costos de transacción en el precio de la opción, analizar la sensibilidad del precio de la
opción con respecto a cambios en la frecuencia de rebalanceo del portfolio replicante y analizar
la convergencia del método numerico.

El segundo modelo estudiado es una generalización del modelo de Counterparty Valuation
Adjustment (CVA). CVA es un modelo que surge como consecuencia de la crisis financiera del
2008 dado que la metodoloǵıa estandar de valuación previa no consideraba las probabilidades
de default (PD) de las dos partes de un contrato financiero. Este punto puede reflejarse en
clásico modelo de Black-Scholes, el cual entre sus supuestos presenta la ausencia de probabil-
idad de default de las partes. En nuestro trabajo partimos de el trabajo original de Ref [13]
donde la PD de tanto el emisor del contrato como la contraparte son consideradas y a la cual
nosotros le agregamos la presencia de costos de transacción en el portfolio replicante. Como
consecuencia, obtuvimos una ecuación de tipo quasilinear parabólica. Es importante remar-
car que determinar el precio de dicha opción mediante la resolución de la ecuación diferencial
consume mucho tiempo computacional y es por esto que en la industria se trabaja bajo el
modelo de esperanza condicional. Muchos trabajos han sido presentados siguiendo esta linea
de trabajo tales como Ref [10], Ref [11] and Ref [12]. Un tercer enfoque es el dearrollado por
Ref [14] y expandido por Ref [15] y Ref [16]. En estos trabajos, el autor desarrolla una forma
reducida en base a un modelo de backward stochastic differential equations para resolver el
problema de valuación de CVA permitiendo la existencia de restricciones de fondeo.

Aplicando los pasos de [13], deducimos el modelo de mercado correspondiente y obtuvimos
una ecuación diferencial quasilineal. Luego, nos focalizamos en probar la existencia de al
menos una solución usando un método de punto fijo. Construimos un operador T tal que el
punto fijo del mismo sea al mismo tiempo la solución del problema no lineal. Este operador
fue construido siguiendo los parámetros necesarios para la aplicación posterior del teorema
de Schauder. Es necesario aclarar que la existencia de solución depende de tres condiciones
impuestas a los parámetros del modelo. Estas condiciones son equivalentes a fijar volatilidades
ni muy pequeas ni muy grandes y acotar la tasa de crecimiento del activo subyacente bajo la
medida libre de riesgo. Bajo estas condiciones impuestas es que deducimos la existencia de la
menos una solución convexa.

La segunda parte del trabajo se focaliza en el desarrollo de un esquema numérico para
encontrar soluciones aproximadas del problema no lineal original. Desarrollamos un esquema
con una grilla no uniforme en la compononente espacial tal que el espaceado resulte fino cerca
del strike y grueso lejos del mismo. Siguiendo los trabajos de Ref [43], Ref [9] y Ref [21],
obtuvimos la discretización de las primeras y segundas derivadas espaciales y definimos el



esquema de diferencias finitas. Dado el esquema numérico, analizamos el comportamiento del
precio de una opción call de tipo Europea bajo diversos escenarios aplicando un analisis de
sensibilidad sobre los diversos parámetros. Además, comparamos nuestros resultados con los
obtenidos en el trabajo original Ref [13] y calculamos como los costos de transacción impactan
en el el valor final de CVA.

Esquema de la tesis

El Caṕıtulo 1 contiene el marco teórico que va a ser utilizado a lo largo de la tesis. Se encuen-
tra subdividido en las tres grandes areas en las que trabajamos. Primero, presentamos los
conceptos básicos relacionados con los instrumentos financieros, requeridos para comprender
los problemas propuestos. Segundo, incluimos las definiciones y los resultados más impor-
tantes del area de las ecuaciones diferenciales en derivadas parciales. Especificamente, nos
focalizamos en resultados de ecuaciones de tipo parabólicas, ecuaciones no lineales y diver-
sas formas de probar la existencia de solución. La tercera sección corresponde al area del
cálculo numérico. Definimos el esquema de diferencias finitias expĺıcito y como es gener-
alizado al esquema de Crank-Nicholson. Además, incluimos la definicion del esquema ADI
y dos formas distintas de discretizar las ecuaciones: los esquemas de Peaceman-Rachford y
Douglas-Rachford.

El Caṕıtulo 2 contiene todos los resultados correspondientes al trabajo Ref [7]. La sección
2.1 incluye una introducción en valuación de opciones considerando la presencia de costos
de transacción y diversos trabajos y modelos existentes en la literatura. La sección 2.2 está
dedicada a la construcción del modelo de mercado y la consecuente derivación de la ecuación
diferencial no lineal. La sección 2.3 comprende todos los pasos aplicados para probar la
existencia de al menos una solución viscosa, incluyendo la construcción de ambas sub y super
soluciones y la aplicación del método de Perron. La sección 2.4 incluye el desarrollo del
esquema numérico y los resultados correspondientes al impacto de los costos de transacción
en el precio de la opción como aśı también la convergencia del esquema numérico.

El Caṕıtulo 3 contiene todos los resultados correspondientes al trabajo Ref [6]. La sección
3.1 presenta una introducción del modelo CVA y diferentes formas de derivar el esquema de
valuación. La sección 3.2 está dedicada a la construcción del modelo de mercado incluyendo
la presencia de costos de transacción en cada paso del rebalanceo del portfolio replicante. La
sección 3.3 comprende todos los pasos aplicados para probar la existencia de al menos una
solución débil utilizando el teorema de punto fijo de Schauder. La sección 3.4 incluye el de-
sarrollo del esquema numérico utilizado para encontrar una solución aproximada del problem
no lineal y provee conclusiones relacionadas con el impacto de los costos de transacción en el
valor de CVA.



Introduction

Mathematics and finance are two fields that are highly connected. In particular, the problem of
finding the optimal price of any financial instrument is a challenging task which is generally
solved using different mathematical tools and techniques. For example, the dynamics of a
stock price, an interest rate, the volatility of a stock and the correlation between two assets
can be modelled using a brownian motion with drift. Another example correspond to the
steps that are applied to find the model of the price of a financial option. In that context,
probabilistic tools such as the martingale representation theorem and the Girsanov theorem
are required to deduce the model. Moreover, the deduction of these models usually leads to
different types of parabolic partial differential equations.

The aim of this thesis is to generalize two types of financial models widely known in the
literature by relaxing one key assumption: the absence of transaction costs when constructing
the replicant portfolio.

The first model corresponds to the standard option pricing model which, in its original
form, correspond to the Black-Scholes model. This model expresses the dynamic of a financial
option over one underlying asset. Moreover, it relies on multiple assumptions that do not
generally apply in real life. Our generalization comes from two different sides. First, we
propose to model a multi-asset option with N underlying assets. This generalization has been
studied before and leads to a multidimensional linear parabolic partial differential equation.
Our second observation comes from the relaxation of one of the assumptions: the absence of
transaction costs in the construction of the replicant portfolio. This inclusion strongly affects
the original model as a nonlinear term appears in final equation. From a PDE perspective, the
model is still parabolic but not any more linear. Depending the shape of the transaction costs,
the nonlinearity can be quasilinear, semilinear or fully nonlinear. As we propose a general
transaction costs function that covers all the feasible functions, we derive a fully nonlinear
problem. In our first work Ref [7] we deduce this general problem following the standard
Black-Scholes steps in a combination of techniques used previously in different works such as
Ref [4], Ref [20], Ref [33], Ref [39], Ref [45] and Ref [46]. In this thesis we present those steps
in Section 2.2.

Given the nonlinear nature of the differential equation, we decide to look for a viscosity
solution. This solutions belong to a type of weak solutions and are usually found by proposing
a pair of sub and supersolutions. Using the fact that the linear problem is solvable, we take
advantage of this to derive the pair of sub and supersolutions. One important tool within this
technique is Perron’s method. This methodology was originally proposed to find a solution
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of the Dirichlet problem for the Laplace equation. Under the viscosity framework, Perron’s
method guarantees the existence of a solution of the correspondent Dirichlet problem.

Our first work ends with a development of a numerical framework to find an approximate
solution of the original nonlinear problem and understand how do the transaction costs affects
the price of a financial option. As we work with a multidimensional equation, we apply one
type of splitting operator method, known as Alternating Direction Implicit (ADI) method.
This technique results to be useful due to the existence of crossed derivatives in the numerical
scheme and the impossibility to solve one tridiagonal system. Finally, given the numerical
scheme and different testing scenarios, we focus on three different analysis: measure the
impact of transaction costs in the option price, analyze the sensitivity of the option price to
changes in the frequency of rebalancing of the replicant portfolio and observe the convergence
of the numerical scheme.

The second model in which we worked with is a generalization of the Counterparty Val-
uation Adjustment (CVA) model. CVA is a model that arose as a consequence of the 2008
financial crisis as the standard valuation methodology of that time did not consider the prob-
ability of default (PD) of both parties that participated in a contract. This situation can be
seen in the widely used Black-Scholes model as one of its assumptions is the absence of proba-
bility of default. In our work, we start from the seminal paper of Ref [13] where the PD of both
the issuer and the counterparty are considered and include the presence of transaction costs
in the replicant portfolio of the option. As a consequence, we obtain a quasilinear parabolic
partial differential equation. It is important to remark that finding a numerical solution of
this problem is time consuming and it is a reason of why practitioners prefer to work under
the conditional expectation approach. Many works have been done following this line of work
as of Ref [10], Ref [11] and Ref [12]. A third approach is taken by Ref [14] and further on with
Ref [15] and Ref [16]. On its works, the author develop a reduced-form backward stochastic
differential equations (BSDE) approach to the problem of pricing and hedging of the CVA by
allowing the presence of multiple funding constraints.

After deducing the market model by adapting the steps of Ref [13] and getting a quasilinear
differential equation, we focus on proving the existence of at least one solution. For this
purpose, we choose to use a fixed point approach. We have to construct an operator T such
that its fixed point is at the same time a solution of our nonlinear problem. This operator
has to be constructed in a way so that the Schauder fixed point theorem can be applied. One
important consideration for this problem is that three different conditions on the parameters
have to be applied to assure the existence of solution. These conditions are equivalent to
setting the volatility either not to high or not to low and that the stock growth rate under
the risk neutral measure has to be bounded. As a consequence, the existence of at least one
convex solution is deduced.

The second part of the work relates to the development of a numerical framework to
find an approximate solution of the original nonlinear problem. We develop a scheme with
a non-uniform grid in the spatial component such that the spacing is fine near the strike
value and coarse away from the strike. Following Ref [43], Ref [9] and Ref [21] we obtain
the discretization of the first and second spatial derivatives and define the finite difference
framework. Given the numerical scheme we analyze the behavior of the option price for



an European call under different scenarios by performing a sensitivity analysis on different
parameters. We also compare our results with the ones obtained by the original model Ref
[13] and calculate how the transaction costs impact the final CVA value.

Thesis outline

Chapter 1 contains the theoretical framework that will be used along the thesis. It is subdi-
vided in the three main areas in which we worked. First, we provide all the basic concepts
related to financial instruments that will be required to understand the problems proposed.
Second, we include important definitions and results from the partial differential equation
area. Specifically, we focus on different results about parabolic equations, nonlinear equa-
tions and different ways to prove the existence of solution. The third Section correspond to
the numerical analysis area. We define an explicit difference scheme and how is generalized
into the Crank-Nicholson scheme. Moreover, we include the definition of the ADI scheme
and two different ways of discretizing the differential equation: the Peaceman-Rachford and
Douglas-Rachford scheme.

Chapter 2 contains all the results related to Ref [7]. Section 2.1 provides an introduction
on option pricing with transaction costs and different works and models available in the
literature. Section 2.2 is devoted to the construction of the correspondent market model
and the derivation of the nonlinear differential equation. Section 2.3 comprises all the steps
applied to prove the existence of at least one viscosity solution, including the construction of
both sub and supersolutions and the application of Perron’s method. Section 2.4 includes the
development of the numerical scheme and the results regarding the impact of the transaction
costs in the option price as well as the convergence of the numerical scheme.

Chapter 3 contains all the results related to Ref [6]. Section 3.1 presents an introduction
on the CVA model and different ways to derive the pricing framework. Section 3.2 is devoted
to the construction of the market model by including the presence of transaction costs on
each rebalancing step. Section 3.3 comprises all the steps applied to prove the existence
of at least one weak solution following Schauder fixed point theorem. Section 3.4 includes
the development of a numerical framework to find an approximate solution of the nonlinear
problem and provides conclusions regarding the impact of transaction costs in the CVA value.



Chapter 1

Preliminaries

In this chapter we present different results that are used along the entire thesis and are needed
to derive the main results presented in Chapters 2 and 3. Moreover, we split this chapter into
three Sections to cover the main theory that arises on each working topic.

In the first Section we introduce the basic financial language and discuss the fundamental
results of the option pricing theory. This will help us to understand the financial problems
that we want to model and solve using different techniques. The second Section covers all the
definitions and results that we require to prove the existence of solution of nonlinear parabolic
partial differential equations. These include the introduction of the spaces in which we will
work, different fixed-point theorems, iterative methods, super-sub solution methods and the
main results of parabolic PDE theory. The third and last Section is related to the theoretical
background of the numerical methods that we employ to solve the partial differential equations
following a numerical approach. We will also discuss about both Euler method and splitting
operators methodology.

1.1 Finance

In this Section we are going to present basic definitions and concepts needed to understand
the problems that we discuss in Chapters 2 and 3. Specifically, we are going to introduce the
theory of option pricing that leads to the parabolic equations that we will study afterwards.
The bibliography used for this purpose are Ref [8], Ref [27] and Ref [44].

1.1.1 Financial Instruments

We are going to work with two basic financial instruments: a discount bond and a stock. The
first instrument correspond to an agreement to pay some money now in exchange for receiving
a larger sum later. It is defined based on two values: the length or maturity of the contract
and the extra amount that will be paid in the future (that is measured via the interest rate).
If we define P (t, T ) as the price at time t of this bond that pays 1 dollar at time T , we have
that

1
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P (t, T ) = e−r(T−t) (1.1.1)

where r is a constant interest rate. The second instrument, the share of a stock, represents
a fractional ownership of a company. The stock price is modelled following a log-normal
distribution such that, if we define St as the price of the stock S at time t, it can be modelled
as

logST = logS0 +X (1.1.2)

where X is a normally distributed random variable. One important difference between
the price of a bond and the price of a stock is that the first one is deterministic; given the
value of the interest rate, the price is known for every t. On the other side, the price of the
stock is a random variable with a pre-defined mean and variance. This implies that the price
is stochastic and can vary with certain probability. In fact, the stochastic component of the
stock price is modelled following a brownian motion.

Definition 1.1.1. The process W = {Wt}t≥0 is a brownian motion if and only if

i. Wt is continuous and W0 = 0,

ii. Wt follows a normal distribution with zero mean and variance equal to t,

iii. the increments Ws+t −Ws are independents.

Given the definition of a brownian motion, the following equation shows the dynamics of
the stock price by using the notation of an stochastic differential equation

dS = µSdt+ σSdWt (1.1.3)

where µ and σ are the respective mean and volatility of the stock price. The first term
of the equation contains the deterministic change of the stock price. Indeed, the price moves
with a trend given by the value of µ. The second term involves the stochastic component
which is expressed with a brownian motion.

One important tool from the stochastic calculus is the Itô’s formula, which is an analogous
of Taylor’s formula for stochastic processes.

Definition 1.1.2 (Itô’s formula). If X is an stochastic process satisfying the stochastic dif-
ferential equation dXt = µdt+σdWt and f is a deterministic twice continuously differentiable
function, then Yt = f (Xt) is also a stochastic process and is given by

dYt =

(
µf ′ (Xt) +

1

2
σ2f ′′ (Xt)

)
dt+

(
σf ′ (Xt)

)
dWt (1.1.4)
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The third and last financial instrument that we present is the option. An option is a
contract which gives the buyer the right, but not the obligation, to buy or sell an underlying
asset at a specific price (strike price) on a specified date. Every option has a payoff, which
is its value at the time of exercise. For example, the most common option, the European
call, correspond to a contract which gives the right to buy the stock S at time T at price K.
Hence, the payoff of this contract is given by

max (ST −K, 0) (1.1.5)

If the price at maturity is higher than the strike price, the holder of the option will exercise
the contract and buy the stock. As a consequence, he will earn ST −K. However, if the strike
price is higher, the holder will not exercise the option as it will loose money. Hence, he will
earn nothing from this contract.

Up to this point, we will focus on the valuation of different options. We need to answer
the question of which is the optimal price of an option given the underlying instrument and
its own characteristics. In the following two Sections we will show the answer of this question
using two different frameworks. The first one will lead to a PDE of the option price. The
second framework shows that the option price is given by a conditional expectation of the
discounted payoff under an equivalent measure.

1.1.2 Option Pricing via Replication

In this Section we present the Black-Scholes methodology, which is a procedure that leads to
the price of an option over one asset (and to the well-known Black-Scholes equation). Let us
first define the main seven assumptions that we will follow on this procedure:

• The asset price follows a lognormal random walk.

• The risk-free interest rate r and the volatility of the asset σ are known functions over
the life of the option.

• There are no transaction costs when buying or selling any asset.

• The underlying asset pays no dividends during the life of the option.

• Every risk-free portfolio earns the same return (r, which is the risk-free interest rate).

• The trading of the underlying asset can take place continuously and

• Assets are divisible and can be sold without owning it (short-selling).

Let us define V (S, t) as the price of an option that depends only on the price of the asset
S and the time t. Hence, using Ito’s lemma from (1.1.4), and considering the dynamics of the
asset S as in equation (1.1.3) we know that
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dV = σS
∂V

∂S
dW +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt (1.1.6)

The next step is to construct a portfolio Π which has one option V and −∆ amounts of
the stock S. Its value can be represented as

Π = V −∆S (1.1.7)

The one-step change of the value of this portfolio is given by

dΠ = dV −∆dS (1.1.8)

as ∆ is held fixed during each time step. If we apply equation (1.1.6) in equation (1.1.8),
we obtain

dΠ = σS

(
∂V

∂S
−∆

)
dW +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
− µ∆S

)
dt (1.1.9)

It can be seen that if we choose ∆ = ∂V
∂S on each time step, we will be able to remove the

randomness of the problem. Following this step, we define a portfolio whose increments are
deterministic

dΠ =

(
1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt (1.1.10)

It is important to note that dΠ = rΠdt as if the right-hand side of equation (1.1.10) were
greater or lower than rΠ, an strategy can be created to make an instantaneous profit. This
is not accepted as per the assumptions of the model. Then, we have

rΠdt =

(
1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt (1.1.11)

Finally, we obtain the following deterministic equation, also known as the Black-Scholes
equation.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.1.12)
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Equation (1.1.12) gives us the dynamics of every option over one underlying stock S.
Boundary and terminal conditions will be the ones that represent each existing option. For
example, for an European option we have the following conditions

V (S, T ) = max (ST −K, 0)

V (0, t) = 0 for all 0 ≤ t ≤ T (1.1.13)

V (S, t)→ S as S → +∞

Moreover, the equation (1.1.12) with conditions given by (1.1.13) has the following solution

V (S, t) = N (d1)St −N (d2)Ke−r(T−t)

d1 =
1

σ
√
T − t

[
log

(
St
K

)
+

(
r +

σ2

2
(T − t)

)]
(1.1.14)

d2 = d1 − σ
√
T − t

where N is the cumulative distribution function of the standard normal distribution, T
is the maturity, σ is the stock’s volatility, K is the strike price and r is the risk-free interest
rate.

Example 1.1.3. Let us apply formula (1.1.14) at t = 0 with the following parameters: S0 = 10,
T = 1 , r = 0.05, σ = 0.25. The results are given in the following table.

Strike Price Strike Price

5 5.2446 11 0.8026
7 3.3856 13 0.3046
9 1.8141 15 0.1038

The results show the expected behaviour of the option price. When the option is in-the-
money (S > K), there is a positive intrinsic value. Hence, the probability of the option
maturing with a positive payoff is indeed positive. On the other hand, when the option is
out-of-the-money (S < K), the option has no intrinsic value. As the probability of the option
maturing with a positive payoff decrease as the strike is higher, it is expected that option
price will tend to zero.

1.1.3 Option Pricing via Expectation

In this Section we derive the pricing framework that is known as risk neutral pricing. We
follow the steps explained in Ref [40] in order to find the optimal price of a financial option
with the underlying stock S.

Let us start by defining the discount process D (t) as of
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D (t) = exp

(
−
∫ t

0
R (s)

)
ds

where R (s) is an interest rate process. Let us note that, by using Itô’s formula (1.1.4),
the variation of the discount process is equal to

dD (t) = −R (t)D (t) dt. (1.1.15)

Let us create a portfolio X (t) which starts with an initial capital X (0) and at each time
t holds ∆ shares of stock S (t) by borrowing or investing at interest rate R (t) as necessary to
finance this operation. Then,

dX (t) = ∆ (t) dS (t) +R (t) (X (t)−∆ (t)S (t)) dt (1.1.16)

We will again model the stock process as in equation (1.1.3) so that equation (1.1.16)
becomes

dX (t) = ∆ (t) (µ (t)S (t) dt+ σ (t)S (t) dW (t)) +R (t) (X (t)−∆ (t)S (t)) dt

= R (t)X (t) dt+ ∆ (t) (µ (t)−R (t))S (t) dt+ ∆ (t)σ (t)S (t) dW (t) (1.1.17)

= R (t)X (t) dt+ ∆ (t)σ (t)S (t) [Θ (t) dt+ dW (t)]

where Θ (t) is known as the market price of risk and is denoted as

Θ (t) =
µ (t)−R (t)

σ (t)
(1.1.18)

If we apply the Itô’s product rule to the process of the discounted value of the portfolio
D (t)X (t), we get that

d (D (t)X (t)) = ∆ (t)σ (t)D (t)S (t) [Θ (t) dt+ dW (t)] (1.1.19)

The next step requires to present the Girsanov’s Theorem.

Theorem 1.1.4 (Girsanov’s Theorem). Let W (t) be a brownian motion on a probability
space (Ω,F ,P) and let F (t) be a filtration for this brownian motion. Let Ω (t) be an adapted
process. Let us define
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Z (t) = exp

(
−
∫ t

0
Θ (u) dW (u) du− 1

2

∫ t

0
Θ2 (u) du

)
,

W̃ (t) = W (t) +

∫ t

0
Θ (u) du, (1.1.20)

and assume that

E
∫ T

0
Θ2 (u)Z2 (u) du <∞ (1.1.21)

Then EZ (T ) = 1 and under the probability measure P̃ the process W̃ (t) is a brownian
motion where the new probability measure P̃ is given by

P̃ (A) =

∫
A
Z (w) dP (w) (1.1.22)

Hence, we can use the Girsanov’s theorem in equation (1.1.19) so that

d (D (t)X (t)) = ∆ (t)σ (t)D (t)S (t) dW̃ (t) (1.1.23)

In equation (1.1.23) we deduce that the stochastic process of discounting the portfolio
value is a martingale.

Definition 1.1.5. Let (Ω,F ,P) be a probability space and F (t) be a filtration of sub-σ-
algebras of F . Consider an adapted stochastic process M (t). Then, M (t) is a martingale
if

E [M (t) |F (s)] = M (s) for all 0 ≤ s ≤ t ≤ T. (1.1.24)

Remark 1.1.6. The brownian motion process is a martingale

Using the fact that the discounted portfolio’s value is a martingale, we can use the defini-
tion and note that

D (t)X (t) = Ẽ [D (T )X (T ) |F (t)] , 0 ≤ t ≤ T (1.1.25)

Let us go back and recall the problem of pricing a financial derivative. Let V (T ) be a
measurable F (T ) random variable which represents the payoff of the option at maturity time
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T . So, we want to know how many ∆ (t) shares of S (t) such that X (t) = V (t) almost surely.
Hence, once it is done, we will have that

D (t)V (t) = Ẽ [D (T )V (T ) |F (t)] (1.1.26)

In order to determine the value of ∆ (t) we need to define the Martingale Representation’s
Theorem.

Theorem 1.1.7 (Martingale Representation’s Theorem). Let W (t) be a brownian motion on
a probability space (Ω,F ,P) and let F (t) be the filtration generated by the brownian motion.
Let M (t) be a martingale with respect to this filtration. Then, there exists an adapted process
Γ (t) such that

M (t) = M (0) +

∫ t

0
Γ (u) dW (u) (1.1.27)

By using this theorem we can define the process ∆ (t) and find the value of V (t). So,
given that D (t)V (t) is a martingale, there exists a process Γ̃ (u) such that

D (t)V (t) = V (0) +

∫ t

0
Γ (u) dW̃ (u) (1.1.28)

Moreover, if we recall equation (1.1.23), we know that

D (t)X (t) = X (0) +

∫ t

0
∆ (u)σ (u)D (u)S (u) dW̃ (u) (1.1.29)

In order to have X (t) = V (t) for all t, we will shall clear out Delta (t) from X (0) = V (0)
so that

∆ (t)σ (t)D (t)S (t) = Γ̃ (t) (1.1.30)

which is equivalent to

∆ (t) =
Γ̃ (t)

σ (t)D (t)S (t)
(1.1.31)

Hence, with this choice of ∆ (t) we could define the price of the option V (t) as of

V (t) = D (t)−1 Ẽ [D (T )V (T ) |F (t)] (1.1.32)

In particular, we can note that the price of a financial derivative at time zero is the
expected value of the discounted payoff.
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1.1.4 Connection between both frameworks: Feynman-Kac Theorem

In the previous two Sections we derived the price of an option following two different frame-
works. In Section 1.1.2 we found that the price is the solution of a parabolic PDE with certain
final and boundary conditions. On the other side, in Section 1.1.3 we showed that the price
of an option is equal to the conditional expectation of the payoff discounted. In order to show
that both frameworks generate the same results, we need to define the Feynman-Kac The-
orem. In fact, the relationship between geometric brownian motions and the Black-Scholes
PDE equation is a particular case of the relationship between stochastic differential equations
and PDE’s.

Theorem 1.1.8 (Feynman-Kac Theorem). Consider the stochastic differential equation

dX (u) = β (u,X (u)) du+ γ (u,X (u)) dW (u) . (1.1.33)

Let h (y) be a Borel-measurable function. Fix T > 0 and let t ∈ [0, T ] be given. Define the
function

g (t, x) = E
[
e−r(T−t) (h (X (T )) + f (t, x)) |Ft

]
. (1.1.34)

Then, g (t, x) satisfies the partial differential equation

∂g (t, x)

∂t
+ β (t, x)

∂g (t, x)

∂x
+

1

2
γ2 (t, x)

∂2g (t, x)

∂x2
− rg (t, x) = f (t, x) (1.1.35)

with terminal condition

g (T, x) = h (x) for all x (1.1.36)

Hence, recalling that under the risk-neutral measure the dynamics of the stock S is given
by

dS (t) = rS (t) dt+ σS (t) dW (t) (1.1.37)

if we set β = rS, γ = σS and h (T ) the payoff of the option g (t, x), the theorem confirms
that both frameworks produce the same solution.

1.1.5 The Greeks

The next step after learning how to price an option is to understand and measure its inherent
risks. The derivatives of the option with respect to the different variables are known as Greeks.
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If we recall the Black-Scholes formula (1.1.12), we can see that the option’s riskiness is derived
from movements in the underlying asset S, the volatility σ, the risk-free interest rate r and
the time to maturity τ = T − t.

The first risk that every option has is due to the unpredictable movements on the un-
derlying (for example, in the example (1.1.3), the underlying would be S). The delta (∆) is
defined as the rate of change of the option price with respect to the price of the underlying
asset. Then,

∆ =
∂V

∂S
(1.1.38)

The Delta of an European call can be derived from (1.1.12) so that

∆ = N (d1) . (1.1.39)

Given that N is the cumulative distribution function of the standard normal distribution,
Delta is always in the interval [0, 1]. Moreover, if we analyse the components of d1 we can
observe that Delta is smaller when the option is out-of-the-money (St <<< K) and higher
when the option is in-the-money (St >>> K).

The rate of change of the option’s Delta with respect of the price of the underlying asset
is known as Gamma (Γ). This is the second derivative of the option with respect to the asset
price

Γ =
∂2V

∂S2
. (1.1.40)

The Gamma for an European call option is given by

Γ =
N ′ (d1)

Sσ
√
T − t

. (1.1.41)

where N ′ is the probability density function for a standard normal distribution. We can
observe that the maximum is reached when the option is near at-the-money (S ∼ K) and
decreases in both out-of-the-money and in-the-money scenarios.

The Theta (Θ) of an option is the rate of change of the the value of the option with respect
to the passage of time

Θ = −∂V
∂τ

. (1.1.42)

The Theta of an European call is given by
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Θ = −SN
′ (d1)σ

2
√
T − t

− rKe−r(T−t)N (d2) (1.1.43)

As the option tends to be less valuable as the time passes, Theta is then negative. More-
over, when the stock price is low, Theta tends to zero and as the price becomes larger, Theta
tends to −rKe−r(T−t).

Vega (V) represents the rate of change of the value of a portfolio with respect to the
volatility of the underlying asset. Hence, it is defined as

V =
∂V

∂σ
. (1.1.44)

For an European call, Vega is given by

V = St
√
T − tN ′ (d1) . (1.1.45)

Finally, we have Rho (ρ) which represents the rate of change of the value of an option
with respect to changes in the interest rate. Then.

ρ =
∂V

∂r
. (1.1.46)

For an European call, Rho is given by

ρ = K (T − t) e−r(T−t)N (d2) (1.1.47)

1.1.6 The use of financial options

Options can be used for many purposes but we will list the two most important ones. The
first one is for speculation and the second one is for hedging.

Let us pick example (1.1.3) and suppose that an investor thinks that the stock will rise its
value over the next year. Then, he has two possibilities. The first one is to actually buy the
stock at time t = 0. If his capital worth 1000 $, he will be able to buy 100 stocks. The second
possibility is to buy an option with maturity of 1 year. Let suppose that he bought the option
with strike K = 13 so that he acquired 3283 options of stock S. Now, let us analyse the two
possible scenarios. The first case occur when at t = T the price of the stock is higher than
the strike value which we can suppose is ST = K + C = 13 + C, where C is a positive value.
Then, if he invested in the stock market, he would have earned (100× C) $. However, if he
had invested in the option market the earning would rise up to (3283× C) $: almost 33 times
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higher!! The second case is when the price of the stock is lower than the strike value which we
can suppose as ST = K−C = 13−C, where C is a positive value. Then, in the stock market
he would have lost (100× C) $ but in the option market he would have lost everything (as
the payoff of an European option is given by max (ST −K, 0). This analysis also show why
options are riskier than stocks and why earnings can be larger but always by assuming more
risk.

The same example can be used for a different analysis. We have seen that we need 1000$
to earn (100× C) $ in the stock market. By doing an inverse calculation we can note that
we need just 30.46 $ to buy the 100 options and earn the same money by speculating in the
options market.

However, hedging is the original purpose of financial options. They were meant to be used
to reduce the risk of a portfolio at a reasonable cost, just like a standard insurance policy. Let
us see an example of how hedging can be done with an option. Suppose we have a portfolio
Π consisting of NS amount of stocks of S and we want to sell an unknown amount NV of
options V . Then our portfolio’s value is given by

Π = NSS −NV V. (1.1.48)

Our aim is to define NV so that ∂Π/∂S is equal to zero at each time step. Then, we have
that

0 ≡ ∂Π

∂S
= NS

∂S

∂S
−NV

∂V

∂S
. (1.1.49)

We can clear out NV and obtain that, at each time step, ∆ = NS/NV . This implies that
given a stock, an option and its delta at time t we can create a portfolio that eliminates the
risk of the stock’s price movements.

1.2 Partial Differential Equations

As we mentioned before, we recall the main definitions and results which are needed to solve
the financial problems presented in Chapters 2 and 3. For this purpose we use the following
books Ref [1, 32, 5, 34, 18]. as they comprise all the theoretical background that we need.

1.2.1 Sobolev spaces and properties

In this Section we are going to present the definition and main properties of Sobolev spaces.
These spaces are of great importance as they allow to naturally find solutions to different
partial differential equations without requiring to assume, for example, that the solutions are
differentiable in the classical sense.
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To define the Sobolev space we must first present the concept of weak derivative and, then,
the Sobolev norm.

Definition 1.2.1. Let α be a multi-index and let v and h be locally integrable functions on
Ω such that

∫
Ω
φh dx = (−1)|α|

∫
Ω
v Dαφdx (1.2.1)

for all φ in C∞0 (Ω). Then, h is the Dα Sobolev derivative of v and write h = Dαv.

Definition 1.2.2. Let Ω be an open set such that Ω ⊂ Rn, k ∈ {0, 1, 2, ...}, 1 ≤ p ≤ ∞ and
α a multi-index. We define the Sobolev norm of a function u as

‖u‖Wk
p (Ω) =

∑
0≤|α|≤k

‖Dαu‖p (1.2.2)

‖u‖Wk
∞(Ω) = max

0≤|α|≤k
‖Dαu‖∞ (1.2.3)

where ‖·‖p is the classical norm in Lp (Ω).

Given the the definition of weak derivative in Definition 1.2.1 and the norm defined in
Definition 1.2.2, we can now construct Sobolev spaces.

Definition 1.2.3. Given k a positive integer and 1 ≤ p ≤ ∞, we define the Sobolev space
W k
p (Ω) as

W k
p (Ω) ≡ {u ∈ Lp (Ω) : Dαu ∈ Lp (Ω) for 0 ≤ |α| ≤ k}. (1.2.4)

Further, we denote the space W k
p,loc (Ω) as

W k
p,loc ≡ {u ∈ Lp (Ω) : uφ ∈W k

p for anyφ ∈ C∞0 }. (1.2.5)

One of the main characteristics of the Sobolev spaces is that the vector space endowed
with the norm defined above form a Banach space.

Theorem 1.2.4. For each k ∈ {1, 2, 3, ...} and 1 ≤ p ≤ ∞, the Sobolev space W k
p (Ω) is a

Banach space. Moreover, Ck0
(
Ω̄
)

is dense in W k
p (Ω).

Another important characteristics that will be used in Chapter 2 are the embeddings of
various Sobolev spaces into others. Essentially, if having certain u ∈ W k

p , we want to know:
does this function also belong to other spaces? For this purpose, we present the Sobolev
embedding theorem which comprises all possible embeddings.
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Theorem 1.2.5 (The Sobolev Embedding Theorem). Let Ω be an open set in Rn and, for
1 ≤ j ≤ n, let Ωj be the intersection of Ω with a plane of dimension j in Rn. (If j = n, then
Ωj = Ω.) Let k ≥ 0 and m ≥ 1 be integers and let 1 ≤ p ≤ ∞ and suppose Ω satisfies the
cone condition. Then,

Case A If either mp > n or m = n and p = 1, then

W k+m
p (Ω)→ Ck (Ω) (1.2.6)

Moreover, if 1 ≤ j ≤ n, then

W k+m
p (Ω)→W k

q (Ωj) for p ≤ q ≤ ∞ (1.2.7)

Case B If 1 ≤ j ≤ n and mp = n, then

W k+m
p (Ω)→W k

q (Ωj) for p ≤ q ≤ ∞ (1.2.8)

Case C If mp < n and either n−mp < j or p = 1 and n−m ≤ j ≤ n, then

W k+m
p (Ω)→W k

q (Ωj) for p ≤ q ≤ jp/(n−mp). (1.2.9)

Another important result to add is that most of these embeddings are in fact compact.
Let us first recall the definition of a compact embedding:

Definition 1.2.6. Let X and Y be Banach spaces, X ⊂ Y . We say that X is compactly
embedded in Y if

i) ‖x‖Y ≤ C‖x‖X for some constant C,

ii) each bounded sequence in X is precompact in Y .

Considering the hypothesis of Theorem 1.2.5 and a bounded subset Ω0 of Ω, the Rellich-
Kondrachov Theorem provide the compactness embedding results.

Theorem 1.2.7 (The Rellich-Kondrachov Theorem). Let Ω be an open set in Rn, Ω0 a
bounded subdomain of Ω and let Ωj

0 the intersection of Ω0 with a plane of j dimension in Rn.
Let k ≥ 0 and m ≥ 1 be integers and 1 ≤ p ≤ ∞.

PART I: Suppose Ω satisfies the cone condition and mp ≤ n, then the following embedding
is compact
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W k+m
p (Ω)→W k

q

(
Ωj

0

)
(1.2.10)

for 0 < n−mp < k ≤ n and 1 ≤ q < kp/(n−mp).

PART II: Suppose Ω satisfies the cone condition and mp > n, then the following embedding
is compact

W k+m
p (Ω)→W k

q

(
Ωj

0

)
(1.2.11)

for 1 ≤ q <∞.

We have listed the most important definitions and theorems of Sobolev spaces that we
need to look for solutions of certain partial differential equations. However, our equations are
actually parabolic instead of elliptic. This implies that we will need to work in spaces of the
form Rn × R to consider the temporal variable. Previous definitions and theorems will help
us to define the spaces and results that will be in our scope.

Under this new scope we will recall Ω as an open set of Rn and ΩT = Ω × (0, T ) the
parabolic domain for some T > 0. Let again α be a multi-index and δ a positive constant
such that 0 < δ < 1. We first extend the definition of weak derivative presented in Definition
1.2.1 to consider the presence of the temporal variable.

Definition 1.2.8. Let v and h be locally integrable functions on ΩT and such that

∫
ΩT

φh dx = (−1)|α|+ρ
∫

ΩT

v Dα∂ρt φdx (1.2.12)

for all φ in C∞0 (Ω). Then, h is the Dα∂ρt Sobolev derivative of v and write h = Dα∂ρt v.

The next step is to define the Sobolev space and the respective norm.

Definition 1.2.9. Given k a positive integer and 1 ≤ p ≤ ∞, we define the Sobolev space
W 2k,k
p (ΩT ) as

W 2k,k
p (ΩT ) ≡ {u ∈ Lp (ΩT ) : Dα∂ρt u ∈ Lp (ΩT ) for 0 ≤ |α|+ 2ρ ≤ 2k}. (1.2.13)

This space is actually a Banach space when we endow it with the following norm

Definition 1.2.10. We define the Sobolev norm of a function u as
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‖u‖
W 2k,k

p (ΩT )
=

∑
0≤|α|+2ρ≤2k

‖Dα∂ρt u‖p (1.2.14)

where ‖·‖p is the classical norm in Lp (ΩT ).

The inclusions of W 2,1
∞ spaces will be similar as the ones of W 2

∞ but considering the
temporal variable.

Theorem 1.2.11. Let Ω be an open set in Rn and ΩT = Ω × (0, T ). The, the following
embeddings are compact

W 2,1
∞
(
ΩT
)
→ C1,0 (ΩT ) (1.2.15)

W 2,1
∞
(
ΩT
)
→W 2,1

2 (ΩT ) (1.2.16)

1.2.2 Second-order Parabolic Equations

In this Section we present the most important results that arise from the study of second-order
parabolic equations. For this purpose, let us first denote the following initial/boundary-value
problem

ut + Lu = f in ΩT

u = 0 in ∂Ω× (0, T ) (1.2.17)

u = g in Ω× {t = 0}

where f and g are given functions and u is the unknown function u (x, t). The letter L
corresponds to the elliptic operator of the form

Lu = −
n∑

i,j=1

aij (x, t)uxi,xj +

n∑
i=1

bi (x, t)uxi + c (x, t)u (1.2.18)

for given coefficients aij ,bi and c.

Remark 1.2.12. For the purpose of deriving existence and uniqueness of solution for problem
(1.2.17), we will let the coefficients of the operator L to follow this assumptions:

|bi (X)| ≤ B

d (X)
, |c (X)| ≤ c1

d (X)2 (1.2.19)

|aij (X)− aij (Y )| ≤ w
(
|X − Y |
d (X,Y )

)
(1.2.20)
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where d (·) is the distance function, w is a positive, continuous and increasing function
with w (0) = 0 and B and c1 positive constants.

Definition 1.2.13. The partial differential operator ∂
∂t + L is parabolic if there exists a

constant θ > 0 such that

n∑
i,j=1

aij (x, t) ηiηj ≥ |η|2 (1.2.21)

for all (x, t) ∈ ΩT and η ∈ Rn.

One important property of solutions of parabolic equations is that they follow a strong
maximum principle. Hence, the maximum of this solutions is achieved in the boundary of the
domain.

Theorem 1.2.14 (Strong Maximum Principle). Assume u ∈ C1,2 ∈ (ΩT ) and c ≥ 0 in ΩT .
Moreover, suppose that Ω is connected. Then, if

ut + Lu ≤ (≥) 0 in ΩT

and u attains a nonnegative maximum (minimum) over ΩT at a point (x0, t0) ∈ ΩT , the
u is constant in Ω× (0, t0).

The following theorem is crucial as it shows that under certain conditions, there exist a
unique solution for the problem (1.2.17).

Theorem 1.2.15. Suppose ΩT ⊂ Rn+1, p > 1 and the coefficients of the elliptic operator L
follow the conditions (1.2.19) and (1.2.20). Then, for any φ ∈W 2,1

p and any f ∈ Lp, there is
a unique solution of

ut + Lu = f in ΩT (1.2.22)

u = φ in PΩ

where PΩ is the parabolic boundary of ΩT . Moreover, u satisfies the estimate

‖u‖p + ‖Du‖p + ‖D2u‖p + ‖ut‖p ≤ C
(
‖f‖p + ‖φ‖p + ‖Dφ‖p + ‖D2φ‖p + ‖φt‖p

)
(1.2.23)

1.2.3 Two methods to prove existence

In this Section we present the main techniques that can be used to solve non-linear problems.
These include different fixed point theorems as well as the super and sub solution method. We
will use this techniques to prove the existence of solution of our parabolic partial differential
equations.
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Fixed Point Theorems

Fixed point theorems are one of the main techniques of the family of the Topological methods.
There are at least two distinct classes of theorems that will be useful for us. First we have
the fixed point theorems for strict contractions. Secondly, the ones for compact mappings.
Let us first present these both definitions of contractions and compact mappings.

Definition 1.2.16. LetX and Y be two metric spaces, we say that T : X → Y is a contraction
if there exists α < 1 such that

∀x, y ∈ X, dY (Tx, Ty) ≤ αdX (x, y) (1.2.24)

where dX and dY are the correspondent distance functions.

Definition 1.2.17. Let X and Y be two metric spaces, we say that a continuous T : X → Y
is compact if ¯T (B) is compact for every bounded set B ⊂ X.

The first theorem that we present is the well-known Banach theorem.

Theorem 1.2.18 (Banach). Let X be a complete metric space and let T : X → X a contrac-
tion. Then, T has a unique fixed point x̂. Moreover, x̂ can be calculated in an iterative way
from the sequence xn+1 = T (xn), starting from any x0 ∈ X.

The second important fixed point theorem is due to Brouwer.

Theorem 1.2.19 (Brouwer). Let B = B1 (0) ⊂ Rn and f : B̄ → B̄. Then, there exists x ∈ B̄
such that f (x) = x.

Brouwer’s theorem can be extended to Banach spaces by working on compact subsets.

Theorem 1.2.20 (Schauder). Let X be a Banach space and suppose K ⊂ X is compact and
convex. Assume also that A : K → K is continuous. Then, A has a fixed point in K.

Last theorem is due to Schaefer. The advantage of Schaefer’s theorem is that it is not
necessary to identify and explicit convex, compact set.

Definition 1.2.21 (Schaefer). Let X be a Banach space and A : X → X a continuous and
compact mapping. Moreover, assume that the set

{u ∈ X|u = λA [u] for some 0 ≤ λ ≤ 1} (1.2.25)

is bounded. Then A has a fixed point.
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Method of subsolutions and supersolutions

Let us first present the definition of sub (super) solution of a parabolic partial differential
equation.

Definition 1.2.22. A function u is call a sub (super) solution of a parabolic problem if

Lu ≤ (≥) f (x, t) in ΩT

u (x, 0) ≤ (≥)u0 (x) in Ω (1.2.26)

u (x, t) ≤ (≥) g (x, t) in ∂Ω× (0, T ) .

where L is a parabolic operator. If α is a subsolution and β is a supersolution, we say
that the pair α, β is ordered if

α (x, t) ≤ β (x, t)

The main idea behind the method of subsolutions and supersolutions is to exploit the
ordering properties for solutions of partial differential equations. Essentially, if we can find
one subsolution ū and a supersolution u of a particular boundary-value problem, and if also
u ≤ ū, then there exists a solution satisfying

u ≤ u ≤ ū. (1.2.27)

Despite given the sub and supersolutions the existence of the main solution can be granted,
the main difficulty is actually how to find it. The first step relies into converting the problem
into a fixed point problem as of x = Tx where T will be an operator related to the partial
differential equation (for example, if we recall Equation (1.2.26), we can define T = L−1f and
work with the fixed point problem).

Suppose now we have X a Banach space equipped with an order ≤ induced by some cone
K and let T : X → X a continuous monotone nondecreasing operator. As before, we say that
α and β are sub and supersolutions of a fixed point problem x = Tx if

α ≤ Tα and β ≥ Tβ (1.2.28)

respectively. Moreover, lets define the sequences un+1 = Tun and vn+1 = Tvn such that
α = u0 and β = v0. Without including any other assumption, this sequences might not
converge. Hence, we have to add two more conditions.

Definition 1.2.23. Let X be a Banach space and K ⊂ X a closed cone. The order ≤ induced
by K is normal if there exists a constant c > 0 such that

0 ≤ x ≤ y ⇒ ‖x‖ ≤ c‖y‖ (1.2.29)
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We first need that the normality is fulfilled. This will imply that the sequences of sub and
supersolutions are actually bounded. Further, we will need that the operator T is compact.
The inclusion of these two assumptions lead to the following theorem

Theorem 1.2.24. Let X be a Banach space and K ⊂ X a closed cone. Assume that the
order induced by K is normal and that T : X → X is compact and nondecreasing. If (α, β)
is a well-ordered couple of sub and supersolutions, then the sequences defined by

u0 = α, un+1= Tun,

v0 = β, vn+1 = Tvn

converge respectively to fixed points u, v of T such that α ≤ u < v ≤ β.

1.2.4 Viscosity solutions

Another type of solutions of nonlinear parabolic equations are the ones known as ”viscos-
ity solutions”. They correspond to a different notion of weak solution as the ones of the
usual Sobolev framework. The term ”viscosity” follows from historical reasons and refers the
existence of a method of obtaining a solution by adding an artificial viscosity term to the
equation and obtaining a solution by passing to a vanishing viscosity limit. We are going to
list some definitions that are important to then define a viscosity solution. First of all, given
an operator F , Definition 1.2.25 presents the definition of a degenerate elliptic operator.

Definition 1.2.25. A nonlinear operator F is degenerate elliptic if

A ≤ B =⇒ F (t, x, p, s, A) ≥ F (t, x, p, s, B) . (1.2.30)

The degeneracy of the nonlinear operator is a necessary condition to assure the existence
of a viscosity solution. Next, in order to define a viscosity solution, we shall start by defining
the notion of upper and lower semi-continuity. During this Section we are going to follow the
notes that correspond Ref [28].

Given an open set ΩT ⊂ RN+1, we recall that V is lower semi-continuous (LSC) or upper
semi-continuous (USC) at (t, x) if for all sequences (sn, yn)→ (t, x),

V (t, x) ≤ lim inf
n→∞

V (sn, yn) (LSC)

V (t, x) ≥ lim sup
n→∞

V (sn, yn) (USC).

Moreover, we define V∗ the lower semi-continuous envelope of V as the largest lower semi-
continuous function lying below V and V ∗ the correspondent upper semi-continuous envelope
of V as the smallest upper semi-continuous function lying above V . Let us now define our
Dirichlet problem as of
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∂V

∂τ
+ F

(
τ, x, V,DV,D2V

)
= 0 in Ω× [0, T ]

V (0, x1, ..., xN ) = V0 (x1, ..., xN ) in Ω (1.2.31)

where F is a degenerate elliptic nonlinear operator and V0 (x1, ..., xN ) is the initial condi-
tion.

Let us continue by presenting the definition of viscosity solutions, which are the type of
solutions that we will look for. Let us consider an open set ΩT ⊂ RN+1 and a function
V ∈ C1,2 (ΩT ). Then, we have the following definitions.

Definition 1.2.26. U is a subsolution of (1.2.31) if U is upper semi-continuous and if, for
all (t, x) ∈ ΩT and all the test functions φ such that U ≤ φ in a neighbourhood of (t, x) and
U (t, x) = φ (t, x) , we have that

∂φ

∂τ
+ F

(
τ, x, φ,Dφ,D2φ

)
≤ 0. (1.2.32)

U is a supersolution of (1.2.31) if U is lower semi-continuous and if, for all (t, x) ∈ ΩT and all
the test functions φ such that U ≥ φ in a neighbourhood of (t, x) and U (t, x) = φ (t, x), we
have that

∂φ

∂τ
+ F

(
τ, x, φ,Dφ,D2φ

)
≥ 0. (1.2.33)

Finally, U is a solution of (1.2.31) if it is both a sub and supersolution.

Proposition 1.2.27. Two important properties of sub and super-solutions are the following
ones.

• Let (Vα)α be a family of sub-solutions of problem (1.2.31) in ΩT such that the upper
semi-continuous envelope V of supα Vα is finite in ΩT . Then V is also a sub-solution
of problem (1.2.31) in ΩT .

• If (Vn) is a sequence of sub-solutions of problem (1.2.31), then the upper relaxed-limit
V of the sequence defined as follows

V (τ, x) = lim sup
n→∞,(s,y)→(τ,x)

Vn (s, y)

is everywhere finite in ΩT , then it is a subsolution of problem (1.2.31) in ΩT .

Definition 1.2.26 presents not only the actual definition of a viscosity solution but also
introduces the first step to find it: It is crucial to identify a pair of sub and super-solutions of
problem (1.2.31). The method that helps us to derive the existence of a viscosity solution is

Page 21



Chapter 1 Section 1.3

the Perron process. The general idea of this methodology is to construct a sub-solution V −

and a super-solution V + of the nonlinear parabolic equation (1.2.31) such that V − ≤ V +.
Using Proposition 1.2.27, we can construct a maximal sub-solution V lying between V − and
V +. Following a general argument, we can prove that the lower semi-continuous envelope of
the maximal subsolution V is in fact a supersolution.

Now we can present the Perron method to find a solution of problem (1.2.31). We are going
to require first that the nonlinear operator F is degenerate elliptic. Then, Perron method is
defined as follows.

Theorem 1.2.28. Suppose w is a subsolution of problem (1.2.31) and v is a supersolution of
problem (2.3.35) such that w ≤ v. Suppose also that there is a subsolution u and a superso-
lution u of problem (1.2.31) that satisfy the boundary condition u∗ (t, x) = u∗ (t, x) = g (t, x).
Then,

W (t, x) = sup{w (t, x) : u ≤ w ≤ u andw is a subsolution of (2.3.35)}. (1.2.34)

is a solution of problem (1.2.31).

The method of Perron guarantees that the supreme of the set of sub-solutions of problem
(1.2.31) that lies between the original sub and super-solutions is indeed a viscosity solution.
However, we need some extra result to assure that boundary conditions are being fulfilled.
For this purpose, we need some type of comparison principle. Following the notes of Ref [28],
we recall the next principle.

Proposition 1.2.29 (Comparison Principle). If u is a sub-solution of problem (1.2.31) and
v is a super-solution of problem (1.2.31) in ΩT and u ≤ v on the parabolic boundary ∂pΩT ,
then u ≤ v in ΩT .

Finally, the combination of both Theorem 1.2.28 and Proposition 1.2.29 let us assure the
existence of solution of problem (1.2.31).

1.3 Numerical Analysis

Our work presented in Chapters 2 and 3 involves finding the solutions of the partial differential
equations via a numerical framework. In both problems we use a standard explicit finite
differences approach with forward differences in the temporal variable and central differences
in the spatial variable. The results of convergence, consistency and stability for this method
are considered valid during the work’s course. In this Section we recall this results from
the standard bibliography (Ref [35] and Ref [41]) and isolate the main properties that this
framework has. Moreover, given that in Chapter 3 we solve a three-dimensional problem
(one temporal dimension and two spatial dimensions), we will also present and explain the
Alternating Direction Implicit (ADI) method following Ref [3], Ref [37] and Ref [42]. This
methodology belongs to the family of the operating splitting methods and is useful when
dealing with crossed derivatives inside the partial differential equation.
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1.3.1 One-dimensional finite differences methods

In this Section we present the results that arise from the study and use of the finite difference
methods on parabolic problems. Moreover, we recall the main steps that are needed to
develop a numerical framework on parabolic equations. For this purpose, and to show the
main properties of this methods, we will reduce our parabolic problems to the following: find
u (x, t) with x ∈ [0, 1] and t ≥ 0 such that

∂u

∂t
=
∂2u

∂x2
for t > 0, 0 < x < 1

u (0, t) = u (1, t) = 0 for t > 0 (1.3.1)

u (x, 0) = u0 (x) for 0 ≤ x ≤ 1.

We first need to set the scheme in which we will be defining our solution u. We form
an equally spaced grid on the closed domain Ω = [0, 1] × [0, tC ] where tC can be as large as
desirable. If ∆x and ∆t are the line spacings, we define each of the points of the grid as

xj = j∆x for 1 ≤ j ≤ J
tn = n∆t for 1 ≤ n ≤ N

Under this framework, our aim is to approximate the solution u by its values in the grid
points as of unj ' u (xj , tn). We then discretize both temporal and spatial derivatives and
apply them in equation (1.3.1). Hence, we find that

∂u

∂t
(xj , tn) ' u (xj , tn+1)− u (xj , tn)

∆t
(1.3.2)

and

∂2u

∂x2
(xj , tn) ' u (xj+1, tn)− 2u (xj , tn) + u (xj−1, tn)

∆x2
(1.3.3)

and Equation (1.3.1) can be approximated by the following explicit difference scheme

un+1
j = unj + µ

(
unj+1 − 2unj + unj−1

)
(1.3.4)

where µ = ∆t/ (∆x)2.

The first question that arises from this scheme corresponds to the error that is get from
the approximation done.
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Definition 1.3.1 (Truncation Error). We define the truncation error as the difference between
the two sides of Equation (1.3.4). Moreover, if we calculate the Taylor series expansions of
both Equations (1.3.2) and (1.3.3), we get that

T (x, t) :=
1

2

∂2u

∂t2
(x, η) ∆t− 1

12

∂4u

∂x4
(ν, t) (∆x)2 . (1.3.5)

One desired property of a finite-difference scheme is to have a solution that actually
converge to the solution of the differential equation as the mesh lengths tend to zero. This
can be traduced in terms of the convergence of the truncation error, i.e.

Definition 1.3.2 (Consistency). A finite-difference scheme is said to be unconditionally con-
sistent if

T (x, t)→ 0 as ∆x,∆t→ 0 ∀ (x, t) ∈ (0, 1)× [τ, tC ] . (1.3.6)

The second and third conditions that have to be satisfied if the solution of the finite-
difference equation is to be an accurate approximation of the corresponding parabolic partial
differential equation are (1) the convergence of the solution of the approximated difference
equation to the actual solution and (2) the controlled decay or boundedness of the rounding
errors that are introduced during the computation.

Definition 1.3.3 (Convergence). We say that the scheme is convergent if for any fixed point
(x∗, t∗) in the domain Ω we have that

xj → x∗ and tn → t∗ implies ujn → u (x∗, t∗) (1.3.7)

The following convergence theorem guarantees that an arbitrarily high accuracy can be
attained by using a sufficiently fine mesh. We generalize the definition of µ to consider different
mesh sizes. Then, we define µi as

µi =
(∆t)i
(∆x)2

i

Theorem 1.3.4. Suppose µ ≤ 1/2 for all sufficiently large values of i, the positive numbers
ni,ji are such that

ni (∆t)i → t > 0, ji (∆x)i → x ∈ [0, 1] (1.3.8)

and |∂4u
∂x4
| ≤ M uniformly in Ω. Then, the approximations ujini generated by the explicit

difference scheme (1.3.4) converge uniformly to the solution u (x, t) of the differential equation
in the region.
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Last condition desired for a numerical scheme is to be stable. The idea behind the stability
is that the numerical process should limit the amplification of all components of the initial
conditions. This analysis is usually done by expressing the solution as a Fourier series and
observing the characteristics of the Fourier modes. Suppose we substitute

unj = λneik(j∆x) (1.3.9)

in the equation (1.3.4). If we set un+1
j = λunj and divide the whole equation by unj , we get

λ = 1− 4µ sin2 1

2
k∆x (1.3.10)

where λ is known as the amplification factor for the mode. This amplification factor
will help us to measure the speed at which the solution grows. Hence, a desirable stable
scheme would require that the difference between two solutions of the difference equations to
be bounded. This idea leads to the following definition of stability.

Definition 1.3.5 (Stability - Von-Neumann). A difference scheme is said to be stable when
there exists a positive number M independent of ∆x and ∆t such that

|λ (k)| ≤ 1 +M∆t for all k. (1.3.11)

This condition applied to problem (1.3.4) leads to requiring µ ≤ 1/2.

The scheme proposed in Equation (1.3.4) can be generalized to use not only the last three
temporal steps (forward scheme) but also the three actual temporal steps (implicit scheme).
This idea can be applied in terms of a weighted average of both schemes. Effectively, we can
propose a six-point scheme

un+1
j = unj + µ

[
θ
(
un+1
j+1 − 2un+1

j + un+1
j−1

)
+ (1− θ)

(
unj+1 − 2unj + unj−1

)]
(1.3.12)

The parameter θ lies in the interval [0, 1] where θ = 0 corresponds to an explicit scheme
and θ = 1 to an implicit scheme. When the value of θ is set as 1/2, the scheme is known
as the Crank-Nicolson scheme. This choice has good properties with respect to the stability,
consistency and convergence of the solution.

To analyze the stability of the Crank-Nicolson scheme we apply a Fourier analysis. If we
substitute the mode (1.3.9) into equation (1.3.4), we obtain

λ− 1 = µ
λ+ 1

2

(
−4 sin2 k∆x

2

)
(1.3.13)
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which is equivalent to

λ =
1− 2µ sin2 k∆x

2

1 + 2µ sin2 k∆x
2

(1.3.14)

Given that λ < 1, instability can arise from the case when λ < −1. However, as we have
chosen θ = 1/2, we see that λ always lies in [−1, 1] for every µ.

The truncation error can be calculate by performing a Taylor expansion in (1.3.4). This
expansion is done over the point

(
xj , tn+1/2

)
. After substituting all the expansions in the

scheme and ripping out all the terms that are cancelled out, it can be showed that the
truncation error for the Crank-Nicolson scheme is given by

T
n+1/2
j = − 1

12

[
(∆x)2 ∂

4u

∂x4
+ (∆t)2 ∂

3u

∂t3

]n+1/2

j

+O (∆x)4 (1.3.15)

Therefore, the Crank-Nicolson scheme is consistent and always second-order accurate in
both ∆t and ∆x. Moreover, the following theorem shows that the scheme also converge when
µ ≤ 1.

Theorem 1.3.6. Suppose µ (1− θ) ≤ 1/2, 0 ≤ θ ≤ 1 and unj satisfying

umin ≤ unj ≤ umax (1.3.16)

where

umin = min{unj } (1.3.17)

and

umax = max{unj }. (1.3.18)

Then, for any refinement path which satisfies the stability condition 1.3.5, the approxi-
mations given by (1.3.12) with consistent initial and Dirichlet boundary conditions converge

uniformly on [0, 1]×[0, tC ] if the initial data are smooth enough for the truncation error T
n+1/2
j

to tend to zero along the refinement path uniformly in this domain.

In particular, if we consider this theorem, the truncation error shown in Equation (1.3.15)
and the value of λ in equation (1.3.14), we can assert that the Crank-Nicolson scheme converge.
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1.3.2 Two and three-dimensional methods: The ADI method

The previous Section comprised the analysis of the basic numerical framework to be applied
on a parabolic unidimensional equation. However, the computational cost of treating the
equation similarly increases when more dimensions are added. Indeed, an important char-
acteristic of Equation (1.3.4) is that the system matrix A is tridiagonal. This implies that
fast algorithms can be applied to solve the iterative problem. As the number of dimensions
increases, crossed-derivatives become real and the resultant system matrix is no longer tridi-
agonal. In this framework is when the Alternating Direction Implicit (ADI) method takes a
crucial role.

Let us first define the forward difference operators in the temporal variable and the central
difference operators in the spatial variable.

∆tu (x, t) = u (x, t+ ∆t)− u (x, t) , δtu (x, t) = u

(
x, t+

1

2
∆t

)
− u

(
x, t− 1

2
∆t

)
∆xu (x, t) = u (x+ ∆x, t)− u (x, t) , δxu (x, t) = u

(
x+

1

2
∆x, t

)
− u

(
x− 1

2
∆x, t

)
Suppose we have a bidimensional heat equation given by

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
. (1.3.19)

The first approach would be to apply the standard Crank-Nicolson framework in two
dimensions. This would give us

un+1
j,l = unj,l +

1

2

∆t

∆x

(
δ2
xu

n+1
j,l + δ2

xu
n
j,l + δ2

yu
n+1
j,l + δ2

yu
n
j,l

)
. (1.3.20)

As we mentioned before, this scheme has one issue. When trying to solve the coupled
linear equations, the system is no longer tridiagonal. One way to solve this problem is to
generalize the Crank-Nicolson scheme differently. The main idea is to split each time step
into two steps of size δ/2. In each substep, a different dimension is treated implicitly. Then,
the scheme proposed is of the form

u
n+1/2
j,l = unj,l +

1

2

∆t

∆x

(
δ2
xu

n+1/2
j,l + δ2

yu
n
j,l

)
(1.3.21)

un+1
j,l = u

n+1/2
j,l +

1

2

∆t

∆x

(
δ2
xu

n+1/2
j,l + δ2

yu
n+1
j,l

)
(1.3.22)

As it can be observed, the main gain of this method is that, in each substep, the solution
is obtained via solving a tridiagonal system. This method can indeed be generalize in terms
of splitting operators. If we rewrite Equation (1.3.19) as of
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∂u

∂t
= Lu (1.3.23)

where L is the parabolic operator. Suppose we can write L as a linear sum of m pieces as
of

Lu = L1u+ ...+ Lmu (1.3.24)

Moreover, we construct Li such that we know how to solve each Liu from time step n to
n+ 1 if that piece of the operator where the only one on the right-hand side of the equation
(for example, via a tridiagonal system). These updates can be noted as un+1 = Ti (un,∆t).
Hence, the steps to update um to um+1 are the following:

un+1/m = T1 (un,∆t/m)

un+2/m = T2

(
un+1/m,∆t/m

)
. . . (1.3.25)

un+1 = Tm
(
un+(m−1)/m,∆t/m

)
Based on this procedure, different ADI methods can be proposed to solve parabolic equa-

tions. One of the first methods is due to Peaceman and Rachford Ref [36].

Peaceman and Rachford scheme

If we continue working with the bidimensional equation (1.3.19), we want to find T1 and T2

to solve the equation

∂u

∂t
= T1u+ T2u. (1.3.26)

Following the idea of the Crank-Nicolson scheme, and without discretizing in the spatial
variable, by Taylor series we have that

un+1 − un

∆t
=

1

2

(
T1u

n+1 + T1u
n
)

+
1

2

(
T2u

n+1 + T2u
n
)

+O
(
∆t2

)
(1.3.27)

which is equivalent to

(
I − ∆t

2
T1 −

∆t

2
T2

)
un+1 =

(
I +

∆t

2
T1 +

∆t

2
T2

)
un +O

(
∆t3

)
. (1.3.28)
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By adding ∆t2T1T2u
n+1/4 on both sides of the equation and the factorizing the terms

that multiply un+1 and un we obtain

(
I − ∆t

2
T1

)(
I − ∆t

2
T2

)
un+1 =

(
I +

∆t

2
T1

)(
I +

∆t

2
T2

)
un +

∆t2

4
T1T2u

n+1 +
(
∆t3

)
.

(1.3.29)

Given that ∆t2T1T2u
n+1/4 is of order ∆t3 we have

(
I − ∆t

2
T1

)(
I − ∆t

2
T2

)
un+1 =

(
I +

∆t

2
T1

)(
I +

∆t

2
T2

)
un +

(
∆t3

)
. (1.3.30)

Peaceman and Rachford solve equation (1.3.30) by proposing the following two steps

(
I − ∆t

2
T1

)
un+1/2 =

(
I +

∆t

2
T2

)
un(

I − ∆t

2
T2

)
un+1 =

(
I +

∆t

2
T1

)
un+1/2

Douglas and Rachford scheme

The second important scheme is due to Douglas and Rachford Ref [17]. If we start with the
backward-time-central-space scheme for equation (1.3.26), we have

(I −∆tT1 −∆tT2)un+1 = un +O
(
∆t2

)
(1.3.31)

which is equivalent to

(
I −∆tT1 −∆tT2 + ∆t2T1T2

)
un+1 = un + ∆t2T1T2u

n + ∆t2T1T2

(
un+1 − un

)
+O

(
∆t2

)
.

(1.3.32)

If we don’t consider the terms of order higher that ∆t2, we have

(I −∆tT1−) (I −∆tT2)un+1 =
(
I + ∆t2T1T2

)
un. (1.3.33)

The Douglas and Rachford scheme is then given by

(I −∆tT1−)un+1/2 = (I + ∆tT2)un.

(I −∆tT2)un+1 = un+1/2 −∆tT2u
n

Further results regarding the convergence, stability and consistency of the numerical
method can be found in Ref [29] and Ref [30].
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1.4 Resumen del caṕıtulo

El objetivo del Caṕıtulo 1 es introducir el marco teórico a utilizar a lo largo del trabajo de
tesis. El mismo está dividido en tres secciones. Esencialmente, presentamos los conceptos
básicos financieros que servirán para entender el trasfondo de los problemas de valuación, la
teoŕıa escencial de los espacios de Sobolev y las soluciones débiles en ecuaciones diferenciales
parabólicas, la teoŕıa de soluciones viscosas y finalmente los diversos esquemas numéricos
utilizados para encontrar soluciones aproximadas a los problemas planteados.

En la Sección 1.1 introducimos el concepto de opción financiera y la forma de modelar su
activo subyacente utilizando el movimiento browniano. Asimismo, presentamos la formula de
Itô la cual resulta ser una herramienta de vital importancia a la hora de deducir la ecuación
diferencial correspondiente. A continuación mostramos dos formas de arribar al valor de una
opción financiera. La Sección 1.1.2 presenta la primera forma, llamada valuación via repli-
cación, la cual consiste en construir un portfolio compuesto por una opción y una cantidad no
fija del activo subyacente. Utilizando la fórmula de Itô y diversos pasos algebraicos obtenemos
finalmente la ecuación diferencial que modela el comportamiento de la opción en cuestión. La
Sección 1.1.3 presenta la segunda forma, llamada valuación via expectación, la cual se basa en
la construcción de un portfolio con cantidades de el activo subyacente y un bono libre riesgo.
El objetivo es notar que, bajo un cambio de medida, el valor del portfolio descontado resulta
ser una martingala. Tanto la definición de martingala como el teorema de representación de
martingalas nos permiten notar que el valor de la opción no es otra cosa que el valor esperado
condicional del payoff descontado. En la Sección 1.1.4 incluimos el teorema de Feynman-Kac
dado que permite conectar ambos resultados: la solución de la ecuación diferencial con el valor
de la expectación condicional. La Sección 1.1.5 introduce las griegas de una opción financiera,
las cuales permiten estudiar el comportamiento de la misma ante cambios en diferentes vari-
ables del modelo. Finalmente, el objetivo de la Sección 1.1.6 consiste en explicar por que el
problema de valuación de opciones es relevante y cuales son los posibles usos que se les puede
dar a la misma.

La Sección 1.2 introduce la definición de los espacios de Sobolev y sus principales propiedades.
Además, incluimos dos métodos para probar la existencia de solución de distintas ecuaciones
no lineales: los métodos de punto fijo y el método de super y sub soluciones. Finalmente, pre-
sentamos las nociones básicas correspondientes a las soluciones viscosas, incluyendo el método
de Perron para demostrar la existencia de solución.

El objetivo de la Sección 1.3 es recordar los métodos mas comunes para resolver numeri-
camente ecuaciones diferenciales parabólicas. Presentamos el esquema de Crank-Nicholson,
con sus propiedades principales, resultados de estabilidad y convergencia. Dado que nosotros
trabajaremos con ecuaciones de mas de una dimension espacial, presentamos el método ADI
y dos posibles esquemas numericos: el Peaceman-Rachford y el Douglas-Rachford.
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Chapter 2

Multi-asset option pricing with
general transaction costs

This chapter is devoted to the presentation and explanation of our first work Ref [7].

2.1 Introduction

In the previous Section 1.1 we showed the steps that have to be applied in order to construct
the equation that governs the price of an option. Specifically, the Black-Scholes equation
(1.1.12), is of the parabolic type and depends on the values of the volatility of the underlying
asset σ, the risk-free interest rate r and the price of the asset S. However, this equation
remains valid under the assumptions listed in Section 1.1.2. If we relax those assumptions,
we may find that the option’s price follow different dynamics. We will now present some
examples of ’adjusted’ Black-Scholes formulas for multiple changes of the original settings.

If we consider that the stock can pay dividends over the life of the option, a Black-Scholes
equation can be constructed following the same steps. If we define q as the dividend payment
rate of stock S (i.e. the dividend payment is equal to q St dt), the new Black-Scholes formula
is given by

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
− rV = 0 (2.1.1)

One parameter that can be modelled with an stochastic component is the volatility. The
well-known Heston model Ref [26] propose a stochastic volatility of the form

dSt = µStdt+
√
vtStdW

s
t (2.1.2)

dvt = k (θ − vt) dt+ σ
√
vtdW

v
t (2.1.3)
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where the deterministic component correspond to a mean-reversion. Under this volatility
model, the price of an European call has the following dynamics

∂V

∂t
+

1

2
v2S2∂

2V

∂S2
+ ρσvS

∂2V

∂S∂v
+

1

2
σ2v2∂

2V

∂v2
+ rS

∂V

∂S
+ [k (θ − v)− λ]

∂V

∂v
− rV = 0

(2.1.4)

where the λ parameter is known as the market price of the volatility. According to Ref
[19], the premium of volatility risk is set as λ (S, v, t) = λv with λ ∈ R. We can see that the
problem now becomes bidimensional but the linearity of the equation is preserved.

Nonlinear equations arise when we include the existence of transaction cost in the con-
struction of the portfolio Π in (1.1.7). On each step, we will have to own ∆ shares of stock S.
However, the cost of buying or selling a certain amount those stocks is not considered. The
seminal paper on this topic is due to Leland Ref [33]. In his work, he proposed that, on each
time step, the transaction costs are equal to k|v|S, where v is the number of shares bought
or sold and k is a proportional constant characteristic to the individual investor. Hence, the
one-step change of the value of the portfolio is given by

dΠ = dV −∆dS − k|v|S (2.1.5)

After applying the same steps as the ones in the standard Black-Scholes model, the equa-
tion obtained is of the form

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV − kσS2

√
2

πdt

∣∣∣∣∂2V

∂S2

∣∣∣∣ = 0 (2.1.6)

In this model, dt is a non-infinitesimal fixed time-stop not to be taken dt → 0. This
first model lead to different variations and generalizations when considering transaction costs
in option pricing. In Ref [4], the authors proposed that transaction costs follow a linear
decreasing function as of (a− b|v|)S|v|. Under this scenario, Leland’s equation (2.1.6) is
modified to include a new term

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV − aσS2

√
2

πdt

∣∣∣∣∂2V

∂S2

∣∣∣∣+ bS3σ2∂
2V

∂S2

2

= 0 (2.1.7)

Moreover, multiple assumptions can be relaxed at the same type. In Ref [20] the author
combine the existence of transaction costs with the presence of an stochastic volatility. The
stochastic representation of both the asset price and the volatility are of the form

dSt = µ (St) dt+
√
vtStdW

s
t (2.1.8)

dvt = α (vt) dt+ σ
√
vtdW

v
t (2.1.9)

Page 32



Chapter 2 Section 2.1

Under the new assumption that the volatility can be considered as a traded asset, the
adjusted Black-Scholes equation is

∂V

∂t
+

1

2
v2S2∂

2V

∂S2
+ ρσvS

∂2V

∂S∂v
+

1

2
σ2v2∂

2V

∂v2
+ rS

∂V

∂S
+ rv

∂V

∂v
− rV

− kS
√

2

πdt

√
v2S2

(
∂2V

∂S2

)2

+ 2ρσv2S
∂2V

∂S2

∂2V

∂S∂v
+ σ2v2

(
∂2V

∂S∂v

)2

(2.1.10)

− k1v

√
2

πdt

√
v2S2

(
∂2V

∂S∂v

)2

+ 2ρσv2S
∂2V

∂v2

∂2V

∂S∂v
+ σ2v2

(
∂2V

∂v2

)2

= 0

where ρ is the correlation between dW v
t and dW s

t .

A similar equation is obtained in Ref [38] when both transaction costs and stochastic
interest rates are considered. Under this scenario, the stock’s price and the interest rate
process are modelled following these equations

dSt = µStdt+ σStdW
s
t (2.1.11)

drt = u (r, t) dt+ w (r, t) dW r
t (2.1.12)

The nonlinear equation that arises from this setting is of the form

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ ρσwS

∂2V

∂S∂r
+

1

2
w2∂

2V

∂r2
+ rS

∂V

∂S
+ (u− λw)

∂V

∂r
− rV

− kS
√

2

πdt

√
σ2S2

(
∂2V

∂S2

)2

+ 2ρσwS
∂2V

∂S2

∂2V

∂S∂r
+ w2

(
∂2V

∂S∂r

)2

(2.1.13)

− k1
Z

η

√
2

πdt

√
σ2S2

(
∂2V

∂S∂r

)2

+ 2ρσwS

(
∂2V

∂r2
− ∂V

∂r

)
∂2V

∂S∂r
+ w2

(
∂2V

∂r2
− ∂V

∂r

)2

= 0

From equations (2.1.6), (2.1.7), (2.1.10) and (2.1.13), we can observe that the transaction
costs function is always known and pre-defined. Moreover, the market models presented
correspond to options over one single asset. In Ref [46] and Ref [45], the author generalize
this framework and apply on different financial instruments. The first extension of Leland’s
method is to price and hedge a portfolio of strongly path-dependent European options on a
stock. The payoff of this option will be given by V (T, ST , YT ) where YT is a path-dependant
quantity. If we represent YT in an integral form

Y (T ) =

∫ T

t
f (s, S (s)) ds (2.1.14)
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it can be seen that the price of the aforementioned option is given by

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2

[
1−A sgn

∂2V

∂S2

]
∂2V

∂S2
+ f (t, S)

∂V

∂Y
− rV = 0 (2.1.15)

where

A =
k

σ

√
8

πdt
(2.1.16)

and k is the parameter of the transaction costs function.

The second extension is developed to derive the price of basket options. These are options
that are applied over multiple underlyings. We can suppose that each of the N underlyings
are modelled following a lognormal distribution as of equation (1.1.3). Under this scenario,
the N brownian motions are correlated between each of them where we denote ρij as the
correlation parameter between WSi and WSj . If on each time step the transaction costs that
arises of trading asset Si are equal to ki|v|Si, the PDE that governs the dynamics of the
basket option is given by

∂V

∂t
+ r

N∑
i=1

Si
∂V

∂Si
+

1

2

N∑
i=1

N∑
j=1

σiσjSiSj
∂2V

∂Si∂Sj
−
√

2

πdt

N∑
i=1

kiΘiSi − rV = 0 (2.1.17)

where

Θi =

√√√√√
∣∣∣∣∣∣
N∑
j=1

N∑
k=1

∂2V

∂Si∂Sj

∂2V

∂Si∂Sk
σjσkρjkSjSk

∣∣∣∣∣∣ (2.1.18)

The second type of generalization has been done in Ref [39] to consider different forms of
transaction costs functions. In their work, they approximate the one time-step change in the
transaction costs function by its expected value. Hence, the equation (2.1.5) can be rewritten
as

dΠ = dV −∆dS − E [∆TC] (2.1.19)

Moreover, they assume that the cost C per one transaction is a nonincreasing function
of the amount of transactions |∆δ| per unit of time ∆t. Then, the one-step change in the
transactions costs is given by
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∆TC = S C (|∆δ|) |∆δ| (2.1.20)

If we define the mean value modification of the transaction costs function as

C̃ (α) =

√
π

2
E [C (α|φ|) |φ|] (2.1.21)

where φ is random variable that follows a standard normal distribution, the original prob-
lem of Leland (2.1.6) can be rewritten as

∂V

∂t
+

1

2
σ̂2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.1.22)

where

σ̂2 = σ2

1−
√

2

π
C̃

(
σS

∣∣∣∣∂2V

∂S2

∣∣∣∣√∆t

) sgn
(
S ∂

2V
∂S2

)
σ
√

∆t

 . (2.1.23)

Hence, the dynamics of multiple type of options can be modelled by proposing different
transaction costs functions. Also, the existence of solution of these family of problems is
considered in Ref [39]. The authors transform the fully nonlinear Black-Scholes equation into
a quasilinear Gamma equation. If we denote the function β (H) = 1/2σ̂ (H)2H and apply
the change of variables x = ln (S/K), τ = T − t and H (x, τ) = S∂2V/∂S2, it is showed that
if H is a solution of problem

∂H

∂τ
=
∂2β (H)

∂x2
+
∂β (H)

∂x
+ r

∂H

∂x
(2.1.24)

then

V (S, t) = aS + be−r(T−t) +

∫ +∞

−∞
max (S −Kex)H (x, T − t) dx (2.1.25)

is a solution of (2.1.22) with a, b ∈ R.

We can observe that the unidimensional problem proposed in the Black-Scholes equations
is then transformed by relaxing different assumption in two ways. If another component is
deemed stochastic, the hedging portfolio will have to include another instrument to hedge
the risk that arises from this new stochastic source. Then, the pricing equation will increase
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its dimensionality as many times as stochastic components are included in the model. The
other way is by including the presence of transaction costs in the hedging strategy. Under
this situation, different nonlinear terms are included into the equation affecting the linearity
of the original Black-Scholes equation.

With respect to our work, we propose a model to price a multidimensional option when
a general transaction costs function is considered. We start from the results developed by
Ref [39], Ref [45] and Ref [46] and from there we develop the market model and derive the
nonlinear PDE that governs the dynamics of the option price. We prove that there exists at
least one weak solution by linearising the equation and applying an iterative approach. The
second part of the work involves developing an ADI framework (presented in Section 1.3.2) to
price a best-cash-or-noting option. Moreover, we analyze different aspects of the ADI model
and how the transaction costs affect the final option price.

2.2 The market model

We start this Section by presenting the type of option that we want to price and the financial
instruments needed for this purpose. Let’s suppose we have N different assets which its price
is denoted by Si for 1 ≤ i ≤ N . Each of this prices are modelled as lognormal processes.
Then, for 1 ≤ i ≤ N , we note these stochastic processes as of

dSit = µi S
i
t dt + σi S

i
t dW

i
t (2.2.1)

where µi and σi are the correspondent mean and variance and W =
(
W 1
t , ...,W

N
t

)
a

multivariate normal vector with zero mean and correlations ρij . To avoid the excess of sub-
indices, we will extract the temporal index and just note Si := Sit .

Given these n assets we define an option V := V (t, S1, ..., Sn) whose dynamic depends on
the price of the n underlyings. An example of this type of option would be the basket option.
In this option, the underlying is the weighted sum or average of the n instruments. Then,
given a strike price K, the payoff is equal to

(
n−1

∑n
i S

i
T −K

)+
. Just as the basket option,

different type of multidimensional options can be defined. In Section 2.4 we will be working
with a best-cash-or-nothing option which pays out a predefined cash amount K if assets S1

or S2 (bidimensional problem) are above or equal to a strike price X.

To get the price of option V we will follow the Black-Scholes steps presented in 1.1.2. More-
over, we will assume the existence of transaction costs when buying or selling any financial
instruments present in the hedging portfolio.

Let’s start by defining Π to be the portfolio that contains δi of asset Si and an option V
over those assets at time t. This portfolio can be represented by

Π = V +
N∑
i=1

δiSi. (2.2.2)
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If we calculate the variation of the portfolio Π at each time t, the transaction costs that
arise from buying or selling any asset Si appear in the formula. Specifically, we can observe
that

∆Π = ∆

(
V +

N∑
i=1

δiSi

)
+

N∑
i=1

∆TCi, (2.2.3)

where δi ∆TCi is the amount of transaction costs when buying or selling δi assets of Si.
Hence, we can observe that the change in the value of the portfolio Π will occur due to changes
in the price of the option V , changes in the price of each asset Si and the lost of value due to
the presence of transaction costs. Following the Black-Scholes approach, we take δi = −VSi ,
so that on each time step, the amount of the shares of assets hold are equal to the Delta of
the asset. Then, we have that

∆Π = ∆V −
N∑
i=1

∂V

∂Si
∆Si −

N∑
i=1

∆TCi. (2.2.4)

We recall from equation (2.1.20) that the variation of the transaction costs can be modelled
as of

∆TCi = SiC (|∆δi|) |∆δi| (2.2.5)

where C is a nonincreasing function that models the transaction costs per unit of time.
Following the rational proposed in Ref [39], we define riTC to be the expected value of the
change of the transaction costs per unit time interval ∆t and price Si. Hence, riTC is equal to

riTC =
E [∆TCi]

Si∆t
=
E [C (|∆δi|) |∆δi|]

∆t
. (2.2.6)

Thus, we are approximating the transaction costs by the expected value of the transaction
costs function applied to the amount of assets bought or sold and multiplied by these amount
again. This value is then multiplied by the price of asset Si in order to get a transaction
cost in dollar terms. We can use this approximation of the transaction costs and apply it in
equation (2.2.4).

Then, we have that

∆Π = ∆V −
N∑
i=1

∂V

∂Si
∆Si −

N∑
i=1

Si r
i
TC ∆t. (2.2.7)

The one-step variation of the option price V can be modelled via the Itô’s formula. If we
recall equation (1.1.4), we get that
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∆V =
∂V

∂t
∆t+

N∑
i=1

∂V

∂Si
∆Si +

1

2

N∑
i=1

N∑
j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
∆t. (2.2.8)

Now, we can use equation the formula of ∆V given by (2.2.8) in equation (2.2.7) to obtain

∆Π =

∂V
∂t

+
1

2

N∑
i=1

N∑
j=1

σiσjρijSiSj
∂2V

∂Si∂Sj

∆t−
N∑
i=1

Si r
i
TC ∆t. (2.2.9)

Moreover, we know from the Black-Scholes model that the growth rate of the portfolio Π
is equal to r. Hence, we saw in Section 1.1.2 that

∆Π = rΠ∆t. (2.2.10)

If we replace the value of ∆Π in equation (2.2.9) we obtain the PDE that represents the
dynamics of the option price

rV +
N∑
i=1

riTC Si =
∂V

∂t
+

1

2

N∑
i=1

N∑
j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+ r

N∑
i=1

∂V

∂Si
Si (2.2.11)

where

riTCSi =
E [∆TCi]

∆t
=
E [C (|∆δi|) |∆δi|Si]

∆t
. (2.2.12)

However, we need to find the value of ∆δi and calculate the explicit form of the term
riTCSi to obtain the complete and final expression of the PDE.

If we recall some previous steps, we remember that we set δi = −∂V/∂Si. Then, we need
to apply Itô’s formula to δi which is a function that depends on S1, ..., SN variables. The
multidimensional version of Itô’s formula (1.1.4) tell us that given dXi

t = µidt+σidW
i
t and f

a deterministic twice continuously differentiable function, then Yt = f
(
Xi
t

)
is also a stochastic

process and is given by

dYt =

N∑
i=1

∂f

∂xi
dXi

t +
1

2

N∑
i=1

N∑
j=1

∂2f

∂xi∂xj
dXi

tdX
j
t (2.2.13)

Therefore, if we set f = −∂V/∂Si and consider only the terms of order O
(√

∆t
)

, we

obtain that
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∆δi = −∆
∂V

∂Si
∼

N∑
j=1

∂2V

∂Si∂Sj
∆Sj ∼

N∑
j=1

∂2V

∂Si∂Sj
σjSjφj

√
∆t (2.2.14)

with φj being a standard normal variable. Then, following the calculation in (2.2.12), we
find that

|∆δi| =

∣∣∣∣∣∣
N∑
j=1

∂2V

∂Si∂Sj
∆Sj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

∂2V

∂Si∂Sj

√
∆t σj Sj φj

∣∣∣∣∣∣ =
√

∆t

∣∣∣∣∣∣
N∑
j=1

∂2V

∂Si∂Sj
σj Sj φj

∣∣∣∣∣∣ .
(2.2.15)

We can set Φi =
∑N

j=1
∂2V

∂Si∂Sj
σj Sj φj and obtain that Φi ∼ N (0,Θi) with

Θi =
N∑
j=1

N∑
k=1

∂2V

∂Si∂Sj

∂2V

∂Si∂Sk
σjσkρjkSjSk (2.2.16)

where ρjk is the correlation parameter between φj and φk. Hence, we find that the expected
value of the change of the transaction costs per unit time interval ∆t is approximate to

riTCSi =
E [∆TC]

∆t
=
E [C (|∆δi|) |∆δi|Si]

∆t

=

√
∆t E

[
C
(√

∆t |Φi|
)
|Φi| Si

]
∆t

(2.2.17)

=
Si√
∆t

E
[
C
(√

∆t |Φi|
)
|Φi|

]
.

The last step is to use the result of equation (2.2.17) in equation (2.2.11) to obtain the PDE
that models the dynamics of a multi-asset option with the presence of any type of transaction
costs:

rV +

N∑
i=1

Si√
∆t

E
[
C
(√

∆t |Φi|
)
|Φi|

]
=
∂V

∂t
+

1

2

N∑
i=1

N∑
j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+ r

N∑
i=1

∂V

∂Si
Si

(2.2.18)

2.3 Existence of solution of the nonlinear PDE

2.3.1 Defining the nonlinear equation

In Section 2.2 we derived the nonlinear PDE which becomes our object of study. Our aim
is to prove that, under certain ’feasible’ conditions, there exists at least one weak viscosity
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solution of equation (2.2.18). We are going first to rewrite equation (2.2.18) to match with
the notation used in Section 1.2.4 and Ref [28].

Let C be a measurable bounded transaction costs function such that C : R+
0 → R+

0 ,
C ∈ L2

(
R+

0

)
and let C,C > 0 be such that C < C (x) < C for every x ∈ R+

0 . Let us denote
G to be the nonlinear operator

G
(
S,D2V

)
=

N∑
i=1

Si√
∆t

E
[
C
(√

∆t |Φi|
)
|Φi|

]
(2.3.1)

=

N∑
i=1

Si√
∆t

√
2

π
2
√

Θi

∫ +∞

0
C
(√

∆t 2 Θiy
)
y e−y

2
dy (2.3.2)

where Θi is given by

Θi =
N∑
j=1

N∑
k=1

∂2V

∂Si∂Sj

∂2V

∂Si∂Sk
σjσkρjkSjSk. (2.3.3)

where ρjk is the correlation parameter between φj and φk, both standard normal variables.
Moreover, let us denote F to be the following nonlinear elliptic operator

F
(
τ, S, V,DV,D2V

)
= −1

2

N∑
i=1

N∑
j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
− r

N∑
i=1

∂V

∂Si
Si + rV +G

(
S,D2V

)
.

(2.3.4)

Then, we define the nonlinear PDE for the problem of pricing a multi-asset option with
general transaction costs as of

∂V

∂τ
(τ, S) + F (τ, S, V,DV,D2V

)
= 0 in Ω× [0, T ]

V (0, S1, ..., SN ) = V0 (S1, ..., SN ) in Ω (2.3.5)

Hence, our objective is to find a viscosity solution of problem (2.3.5).

Remark 2.3.1. Equation (2.3.5) can be rewritten following a matricial form. If we denote the
matrix A as of

(A)ij = σiσjρijSiSj (2.3.6)

then the function F can be set as
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F
(
τ, S, V,DV,D2V

)
= −1

2
tr
(
AD2V

)
− rDV · S + rV +G

(
S,D2V

)
(2.3.7)

For the nonlinear term that correspond to the function G we first note that the value of Θi is
equivalent to the i-th term of the diagonal of the product D2V AD2V , i.e.

Θi =
(
D2V AD2V

)
ii

(2.3.8)

Then, the function G noted in a matricial form as of

G
(
S,D2V

)
=

N∑
i=1

Si√
∆t

√
2

π
2
√

(D2V AD2V )ii

∫ +∞

0
C

(√
∆t 2 (D2V AD2V )ii y

)
y e−y

2
dy

(2.3.9)

2.3.2 Degenerate Ellipticity and Leland’s condition

Deriving the conditions

We are going to prove the existence of a viscosity solution of problem (2.3.5) using Perron’s
process. The main idea of the method is to construct a subsolution u− and a supersolution
u+ of the nonlinear parabolic equation such that u− ≤ u+. Moreover, a subsolution u lying
between u− and u+ can be constructed and show that the lower semi-continuous envelope of
the subsolution u is a supersolution. Before applying the Perron’s process, we need to set
different conditions on the nonlinear operator F . Let us start by recalling the definition of
degenerate ellipticity stated in Section 1.2.26. For this purpose, we will denote by SN the
space of N-dimensional square symmetric matrices. As usual, for X,Y ∈ SN we shall say that
X ≤ Y if and only if Y −X is (nonstrictly) positive definite.

Definition 2.3.2. A nonlinear function F : [0, T ] × Ω+ × R × RN × SN → R is degenerate
elliptic if

X ≤ Y =⇒ F (t, x, p, s,X) ≥ F (t, x, p, s, Y ) . (2.3.10)

Given the definition of degenerate ellipticity we have to set the correspondent conditions
such that the nonlinear operator F satisfies (2.3.10). Let us start by denoting the differential
of F with respect to the second derivative component Y as

DY F (t, x, p, s, B) =
∂F (t, x, p, s, Y )

∂Y

∣∣∣∣
Y=B

(2.3.11)
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that is, DY F (t, x, p, s, B) : RN×N → R. As usual, this operator shall be identified with
the matrix D given by Dij := ∂F

∂Yij
, namely the gradient of F with respect to the variable Y ,

through the so-called Frobenius inner product:

D(U) = D · U :=

N∑
i,j=1

DijUij .

Following Definition 2.3.2, given a positive definite matrix U , we want to see that, for all
B:

DY F (t, x, p, s, B) (U) ≤ 0

Indeed, if the latter condition is fulfilled, then for arbitrary symmetric matrices X ≤ Y it
is seen that, for some B ∈ (X,Y ),

F (t, x, p, s, Y )− F (t, x, p, s,X) = DY F (t, x, p, s, B) (Y −X) (2.3.12)

≤ 0

and hence F is degenerate elliptic.

Let us recall the Leland condition which is present in the unidimensional problem with
a constant transaction costs function. The aim of the this condition is in fact to define a
degenerate elliptic operator such that the matrix of coefficients that correspond to the second
derivatives is definite positive. In our work, the generalized Leland condition will act as the
same and will be deduced from the following two Lemmas.

Lemma 2.3.3. Let D,U ∈ SN . Then D (U) = Tr (DU)

Proof. It follows by simple computation that

Tr (DU) =
N∑
i=1

N∑
j=1

DijUji

=
N∑
j=1

N∑
i=1

DijUij = D · U = D(U).

Lemma 2.3.4. Assume that DY F is symmetric. Then DY F is negative definite if and only
if Tr (DY F U) ≤ 0 for all U ≥ 0.
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Proof. Let us firstly observe that, as DY F is symmetric, there exists a diagonal matrix D̃ and
a change of basis matrix C such that D = C−1D̃C. Then, we have:

Tr (DY F U) = Tr
(
C−1 D̃ C U

)
= Tr

(
C−1 D̃ C U C−1C

)
. (2.3.13)

Denote W = C U C−1, then the previous equality can be rewritten as

Tr (DY F U) = Tr
(
C−1 D̃W C

)
= Tr

(
D̃W

)
. (2.3.14)

Moreover, U is positive definite if and only if W is positive definite. Assume that
Tr (DY F U) ≤ 0 for all U ≥ 0, then Tr(D̃W ) ≤ 0 for all W ≥ 0. Fix a sparse matrix
W such that Wij = 1 if i = j = k and 0 otherwise, then [D̃W ]ii = D̃kk if i = k and 0
otherwise. Thus we deduce that all the eigenvalues of DY F are nonpositive.

Conversely, let us now assume that DY F is negative definite and W is positive definite,
then

Tr
(
D̃W

)
=

N∑
i=1

D̃iiWii ≤ 0. (2.3.15)

Both Lemmas 2.3.3 and 2.3.4 can be summarized in the following line: If the differential
matrix DY F is symmetric, then for any U ≥ 0 the following equivalences hold:

DY F ≤ 0 ⇐⇒ Tr (DY F U) ≤ 0 ⇐⇒ DY F (U) ≤ 0

Hence, in view of (2.3.12) the nonlinear operator F is degenerate elliptic if the differential
matrix DY F is symmetric definite negative. In the following section we will see that the
condition of being symmetric definite negative is the generalization of the Leland condition
defined for the unidimensional problem with constant transaction costs.

Differential Matrix calculation

In this section we perform the computation of the differential matrix DY F . Let us recall
Equation (2.3.7) such that

F (t, x, p, s, Y ) = −1

2
tr (AY )− rs · S + rp+G (S, Y ) (2.3.16)
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Then, by applying standard calculations and discarding function dependencies, we have
that

DY F (t, x, p, s, Y ) = − ∂

∂Y
tr

(
1

2
AY

)
+

∂

∂Y
G (S, Y ) (2.3.17)

The first derivative follows trivially by linearity, that is

∂

∂Ykl
tr

(
1

2
AY

)
=

1

2

N∑
i=1

N∑
j=1

Aij
∂Yji
∂Ykl

,

=
1

2

N∑
i=1

N∑
j=1

Aijδjkδil,

=
1

2
Alk =

1

2
Akl. (2.3.18)

Then, it follows that

∂

∂Y
tr

(
1

2
AY

)
=

1

2
A (2.3.19)

The derivative of the second term involves the product rule, namely

∂

∂Y
G (S, Y ) =

∂

∂Y

 N∑
i=1

Si√
∆t

√
2

π
2

√√√√ N∑
j=1

N∑
k=1

Yij Ajk Yki

∫ +∞

0
C

√√√√2 ∆t

N∑
j=1

N∑
k=1

Yij Ajk Yki y

 y e−y
2
dy


=

N∑
i=1

Si√
∆t

√
2

π
2

 ∂

∂Y

√√√√ N∑
j=1

N∑
k=1

Yij Ajk Yki

∫ +∞

0
C

√√√√2 ∆t

N∑
j=1

N∑
k=1

Yij Ajk Yki y

 y e−y
2
dy

+

√√√√ N∑
j=1

N∑
k=1

Yij Ajk Yki

∫ +∞

0

∂

∂Y
C

√√√√2 ∆t
N∑
j=1

N∑
k=1

Yij Ajk Yki y

 y e−y
2
dy


(2.3.20)

The calculation above can be verified by analysing two derivatives. The first one correspond
to the Θi function defined in (2.3.3).
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∂

∂Ylm

√√√√ N∑
j=1

N∑
k=1

Yij Ajk Yki =
1

2

 N∑
j=1

N∑
k=1

Yij Ajk Yki

−1/2

∂

∂Y

N∑
j=1

N∑
k=1

Yij Ajk Yki

=
1

2

 N∑
j=1

N∑
k=1

Yij Ajk Yki

−1/2
N∑
j=1

N∑
k=1

(
∂Yij
∂Ylm

AjkYki + YijAjk
∂Yki
∂Ylm

)

=
1

2

 N∑
j=1

N∑
k=1

Yij Ajk Yki

−1/2
N∑
j=1

N∑
k=1

(δilδjmAjkYki + YijAjkδklδim)

=
1

2

 N∑
j=1

N∑
k=1

Yij Ajk Yki

−1/2  N∑
k=1

δilAmkYki +

N∑
j=1

δimYijAjl


=

1

2

 N∑
j=1

N∑
k=1

Yij Ajk Yki

−1/2

[δil (AY )mi + δim (Y A)il] (2.3.21)

If we denote the matrix Pi as

(Pi)ml = [δil (AY )mi + δim (Y A)il] (2.3.22)

the derivative with respect to matrix Y is equal to

∂

∂Y

√
Θi =

1

2
Θ
−1/2
i Pi. (2.3.23)

The second derivative corresponds to the derivative of the transaction costs function C
with respect to matrix Y . If we denote

Hi (y) = y

√√√√2 ∆t

N∑
j=1

N∑
k=1

Bij Ajk Bki (2.3.24)

then, it follows that

∂

∂Ylm
C (Hi (y)) = C ′ (Hi (y))

∂

∂Ylm
Hi (y)

= C ′ (Hi (y)) y
1

2
(2∆tΘi)

−1/2 2 ∆t
∂

∂Ylm

N∑
j=1

N∑
k=1

YijAjkYki

= C ′ (Hi (y)) y
1

2
(2∆tΘi)

−1/2 2 ∆t (Pi)lm (2.3.25)
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Then, the derivative with respect to matrix Y is equal to

∂

∂Y
C

(√
2 ∆t (Y AY )ii y

)
= C ′ (Hi (y)) y Pi

√
∆t

2
Θ
−1/2
i (2.3.26)

Then, we can write Equation (2.3.17) as of

DYF (t, x, p, s, Y ) = −1

2
A+ Pi

2√
∆t

√
2

π

N∑
i=1

Si

[
1

2
Θ
−1/2
i

∫ +∞

0
C

(√
2 ∆t (Y AY )ii y

)
y e−y

2
dy

+

√
∆t

2

∫ +∞

0
C ′
(√

2 ∆t (Y AY )ii y

)
y2 e−y

2
dy

]
. (2.3.27)

Thus, DY F (t, x, p, s, Y ) is strictly negative definite if

1

2
A > Pi

2√
∆t

√
2

π

N∑
i=1

xi

[
1

2
Θ
−1/2
i

∫ +∞

0
C

(√
2 ∆t (Y AY )ii y

)
y e−y

2
dy

+

√
∆t

2

∫ +∞

0
C ′
(√

2 ∆t (Y AY )ii y

)
y2 e−y

2
dy

]
. (2.3.28)

As a consequence, the generalized Leland condition follows from Lemmas 2.3.3 and 2.3.4
and can be summarized under the following definition:

Definition 2.3.5. The nonlinear operator F satisfies the generalized Leland condition if
(2.3.28) is satisfied.

Remark 2.3.6. Let us show that effectively our condition reduces to Leland’s condition in the
unidimensional case with constant transaction costs. For this purpose, let us rewrite all the
equation components under these assumptions. Then,

A = S2σ2, Θ =
∂2V

∂S2
σ2S2, C

(√
2 ∆t (D2V AD2V ) y

)
=
C̃

2
(2.3.29)

If we apply this definitions on Equation (2.3.27) and we consider the convexity of solution
V , we get that

DY F

(
t, x, p, s,

∂2V

∂S2

)
= −1

2
S2σ2 + 2

∂2V

∂S2
S2σ2 2S√

∆t

√
2

π

1

2

C̃

4

(
∂2V

∂S2
S2σ2

)−1/2

= −1

2
S2σ2 + S2σ2 sgn

(
∂2V

∂S2

)
S√
∆t

√
2

π

C̃

2σS

=
1

2
S2σ2

[
−1 +

C̃√
∆t

√
2

π

1

σ
sgn

(
∂2V

∂S2

)]
(2.3.30)
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Then, DY F is negative if and only if

C̃√
∆t

√
2

π

1

σ
< 1 (2.3.31)

2.3.3 Perron’s method for existence of solution

Let us start this section by setting the framework in which the well-known Perron method shall
be employed to derive the existence of a viscosity solution. Let us firstly apply a change of
variables in order to obtain a nonlinear operator F with constant coefficients. More precisely,
define

xi = log (Si)

so we obtain:

F̄
(
τ, x, V,DV,D2V

)
= −1

2

N∑
i=1

N∑
j=1

σiσjρij
∂2V

∂xi∂xj
−

N∑
i=1

∂V

∂xi

(
r − σ2

i

2

)
+ rV + Ḡ

(
x,D2V

)
,

(2.3.32)

and the nonlinear function G becomes

Ḡ
(
x,D2V

)
=

N∑
i=1

exi√
∆t

√
2

π
2
√

Θi

∫ +∞

0
C
(√

∆t 2 Θiy
)
y e−y

2
dy, (2.3.33)

with

Θi = e−2xi

 N∑
j 6=i

N∑
k 6=i

∂2V

∂xi∂xj

∂2V

∂xi∂xk
σjσkρjk + 2

N∑
j 6=i

∂2V

∂xi∂xj

(
∂2V

∂x2
i

− ∂V

∂xi

)
σiσj +

(
∂2V

∂x2
i

− ∂V

∂xi

)2

σ2
i

 .
(2.3.34)

Given Equations (2.3.32) and (2.3.33), our Dirichlet problem becomes

∂V

∂τ
+ F̄

(
τ, x, V,DV,D2V

)
= 0 in Ω× [0, T ]

V (0, x1, ..., xN ) = V0 (x1, ..., xN ) in Ω (2.3.35)

where V0 (x1, ..., xN ) is the initial condition.
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Lemma 2.3.7. Let F be the nonlinear operator defined in Equation (2.3.4) and F̄ be the
transformed operator defined in Equation (2.3.32). If F is degenerate elliptic, then F̄ is
degenerate elliptic.

Proof. Let Ā and B̄ be symmetric matrices such that B̄− Ā > 0. Observe that the change of
variables leads to

∂V

∂xj
=
∂V

∂Sj
Sj

∂2V

∂xixj
=

∂2V

∂SiSj
SiSj + δij

∂V

∂Sj
,

so we may denote

F̄
(
t, x, p̄, q̄, Ā

)
= F (t, S, p, q, A)

where

Sj = exj , p = p̄, qj =
q̄j
Sj

Aij =
Āij − δijqj

SiSj
.

Hence, because

F̄
(
t, x, p̄, q̄, B̄

)
− F̄

(
t, x, p̄, q̄, Ā

)
= F (t, S, p, q, B)− F (t, S, p, q, A) ,

it suffices to prove that B > A. To this end, observe that

(B −A)ij =

(
B̄ − Ā

)
ij

SiSj

and, for an arbitrary square matrix M denote by mk(M) the leading principal minor of
order k. A simple computation shows that

mk (B −A) =
mk(B̄ − Ā)∏

i≤k S
2
i

and the result follows from Sylvester’s criterion.
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Hence, the main theorem of this work can be stated as follows:

Theorem 2.3.8. Assume that the original nonlinear operator F satisfies Definition 2.3.5.
Then, problem (2.3.35) has at least one viscosity solution.

Before passing to the proof of the theorem, we are going to recall some definitions stated
in Section 1.2.4 that will be used afterwards. Given an open set ΩT ⊂ RN+1, we recall that V
is lower semi-continuous (LSC) or upper semi-continuous (USC) at (t, x) if for all sequences
(sn, yn)→ (t, x),

V (t, x) ≤ lim inf
n→∞

V (sn, yn) (LSC)

V (t, x) ≥ lim sup
n→∞

V (sn, yn) (USC).

Moreover, we define V∗ the lower semi-continuous envelope of V as the largest lower semi-
continuous function lying below V and V ∗ the correspondent upper semi-continuous envelope
of V as the smallest upper semi-continuous function lying above V .

Now we can present Perron’s method to find a solution of problem (2.3.35). We are going
to require first that the nonlinear operator F is degenerate elliptic. Then, Perron’s method
is defined as follows.

Moreover, we recall Perron’s method from Section 1.2.26.

Theorem 2.3.9. Suppose w is a subsolution of problem (2.3.35) and v is a supersolution of
problem (2.3.35) such that w ≤ v. Suppose also that there is a subsolution u and a superso-
lution u of problem (2.3.35) that satisfy the boundary condition u∗ (t, x) = u∗ (t, x) = g (t, x).
Then,

W (t, x) = sup{w (t, x) : u ≤ w ≤ u andw is a subsolution of (2.3.35)}. (2.3.36)

is a solution of problem (2.3.35).

In order to apply the Perron’s method we first have to set a subsolution and supersolution
of problem (2.3.35). Then, we will have to construct a maximal subsolution such that it lies
between both sub and supersolutions. Finally, we will have to define the proper comparison
principle such that the boundary condition defined in Theorem 2.3.9 holds.

Hence, let us start by recalling the equivalent ”Black-Scholes” linear problem. If we denote
the linear elliptic operator as of

F̃
(
τ, x, V,DV,D2V

)
= −1

2

N∑
i=1

N∑
j=1

σiσjρij
∂2V

∂xi∂xj
−

N∑
i=1

∂V

∂xi

(
r − σ2

i

2

)
+ rV, (2.3.37)
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then there exists a unique solution Λ of the problem

∂V

∂τ
+ F̃

(
τ, x, V,DV,D2V

)
= 0 in Ω× [0, T ]

V (0, x1, ..., xN ) = V0 (x1, ..., xN ) in Ω (2.3.38)

Based on the existence of this unique solution Λ, we will construct our sub and supersolu-
tions. Moreover, the existence of Λ helps us to set an upper bound for the nonlinear term Ḡ
as its second derivatives are bounded. Following the replicant portfolio strategy it is observed
that transaction costs are proportional to the size of the second derivatives of the option price.
From the already known Λ, we know that its second derivatives reach a maximum near the
strike value and tend to zero when prices are either too high or too low. Then, based on the
dynamics of the replicant portfolio, little amount of stocks are traded on each time step under
the scenarios of low or high prices. As a result, transaction costs tend to zero for these stock
prices and have an upper bound when the stock price tends to the strike value. Based on the
existence of this upper bound for the nonlinear term, the following Lemma presents both sub
and supersolutions of problem (2.3.35).

Lemma 2.3.10. Let F be the nonlinear elliptic operator defined in Equation (2.3.32). Then
the following functions are sub and supersolutions of problem (2.3.35).

V = Λ + Cτ

V = Λ− Cτ

where Λ is the unique solution of problem (2.3.38) and C is a positive constant such

C ≥ sup
x∈Ω
|Ḡ
(
x,D2Λ

)
|

Proof. Let us see that the V is a subsolution of (2.3.35). Firstly, the upper semi-continuity
of V follow from the continuity of the solution Λ (τ, x). Let us see that for all test functions
φ such that V ≤ φ in a neighbourhood of (τ, x) and V (τ, x) = φ (τ, x), it follows that
∂φ
∂τ + F̄

(
τ, x, φ,Dφ,D2φ

)
is negative.

Let φ be a test function such that V ≤ φ. Then, we have that

∂φ

∂τ
(τ, x) =

∂V

∂τ
(τ, x)

Dφ (τ, x) = DV (τ, x)

D2φ (τ, x) ≥ D2V (τ, x)

Now we use the condition of degenerate ellipticity required on F . This condition implies
that
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∂φ

∂τ
+ F̄

(
τ, x, φ,Dφ,D2φ

)
≤ ∂V

∂τ
+ F̄

(
τ, x, V ,DV ,D2V

)
≤ Ḡ

(
τ,D2Λ

)
− C

≤ 0

where the last inequality holds using the lower bound of the constant C.

Let us now confirm that V is in fact a supersolution. In this case, the lower semi-
continuity follows from the continuity of the solution Λ. Let us see that for all test func-
tions φ such that V ≥ φ in a neighbourhood of (τ, x) and V (τ, x) = φ (τ, x), it follows that
∂φ
∂τ + F̄

(
τ, x, φ,Dφ,D2φ

)
is positive.

Let φ be a test function such that Λ ≥ φ. Then, we have that

∂φ

∂τ
(τ, x) =

∂V

∂τ
(τ, x)

Dφ (τ, x) = DV (τ, x)

D2φ (τ, x) ≤ D2V (τ, x)

Now we use the condition of degenerate ellipticity required on F̄ and the lower bound of
the positive constant C. Both conditions imply that

∂φ

∂τ
+ F̄

(
τ, x, φ,Dφ,D2φ

)
≥ ∂V

∂τ
+ F̄

(
τ, x, V ,DV ,D2V

)
≥ Ḡ

(
x,D2Λ

)
+ C

≥ 0.

Then, V is a supersolution of problem (2.3.35).

Remark 2.3.11. By definition, it remains valid that V ≤ V .

Following Lemma 2.3.15 from Ref [28], there exists a function U such that V ≤ U ≤ V
and U∗ is a subsolution of (2.3.35) and U∗ is a supersolution of (2.3.35). Then, to finally
prove Theorem 2.3.8, we need to confirm that U∗ (τ, S) = U∗ (τ, S). For this purpose, we will
need to use the comparison principle stated in Ref [28].

Proposition 2.3.12 (Comparison Principle). If u is a subsolution of problem (2.3.35) and v
is a supersolution of problem (2.3.35) in ΩT and u ≤ v on the parabolic boundary ∂pΩT , then
u ≤ v in ΩT .

Hence, our last Lemma is stated below:

Lemma 2.3.13. Let V and V be the sub and supersolutions of problem (2.3.35) and U the
function obtained by Lemma 2.3.15 from Ref [28] such that V ≤ U ≤ V . Then, U∗ (τ, S) =
U∗ (τ, S).
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Proof. Let us first observe that the inequality U∗ ≤ U∗ holds by definition of the semi-
continuous envelopes. For the other inequality let us recall V and V and, using the continuity
of the linear solution Λ and the distance function f (S), we have that

(V )∗ = V = (V )∗(
V
)
∗ = V =

(
V
)∗

In particular, in the parabolic boundary, we find that both sub and supersolutions are
equal to Λ. Then, it is valid that

(
V
)∗ ≤ (V )∗ in ∂pΩT (2.3.39)

Moreover, as for Lemma 2.3.15 from Ref [28], V ≤ U ≤ V . Using this result and the
previous inequality, it follows that

U∗ ≤ U∗ in ∂pΩT (2.3.40)

Finally, the expected inequality is obtained following the comparison’s principle result.

2.4 Numerical

2.4.1 Numerical framework

This Section will include the development of a numerical framework to solve the nonlinear
problem presented in Equation (2.3.35). To this purpose, we will use the concepts showed in
Section 1.3 with the regards to the recommended schemes usually used for multidimensional
PDE’s with the presence of crossed derivatives. As we discussed before, we consider an ADI
scheme (see Section 1.3.2) to find an approximate solution of problem (2.3.35). This ADI
scheme is applied on an iterative framework which results of linearizing our original nonlinear
problem resulting on the following multi-step equation.

−Unτ + LUn = G
(
Un−1

)
in Ω× [0, T ]

Un (0, x1, ..., xN ) = U0 (0, x1, ..., xN , 0) in Ω (2.4.1)

U0 (τ, x1, ..., xN ) = 0 in Ω× (0, T )

with dim Ω = 2. For numerical convenience, we approximate the original smooth domain
by a discrete one Ω̂T ⊂ [a, b]× [a, b]× [0, T ], setting a and b in order to cover a set of feasible
logarithmic stock prices. The step of the spatial variables is uniformly set as ∆x = (b− a) /Sx,
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being Sx the number of grid points in the x- direction. The step of the temporal variable is
also uniformly set as ∆τ = T/Tx being Tx the number of grid points in the τ - direction. We
define n to be the step of the iterative problem and, on each n, m to be each of the temporal
steps. Hence, we define the solution to the n-step iterative problem as Umij = U (xi, yj ,m∆τ)
where 0 ≤ i, j ≤ Sx and 0 ≤ m ≤ Tx.

Given that we have to work on an iterative problem, in each step n, we will have to solve a
linear problem involving both second and mixed derivatives of U . Considering these settings,
we follow the work of Ref [31] to develop the two-step procedure of our ADI scheme. In
Section 1.3.2 we discussed about the intermediate step m + 1/2 that is created to eliminate
the crossed derivative term. In fact, we will take the first half step implicitly in the x-
direction and explicitly in the y-direction. The other half step will be taken implicitly in
the y-direction and explicitly in the x-direction. With this schema, we will be always solving
tridiagonal problems on every step.

Hence, let us start by showing how the PDE equation (2.4.1) is treated. In the first place,
we split the temporal derivative as shown on (2.4.2)

Uτ '
Um+1
ij − Umij

∆t
=
Um+1
ij − Um+ 1

2
ij

∆t
+
U
m+ 1

2
ij − Umij

∆t
. (2.4.2)

In a second step, we discretize the lineal operator

LU =
1

2

N∑
i=1

N∑
j=1

σiσjρij
∂2U

∂xi∂xj
+

N∑
i=1

∂U

∂xi

(
r − σ2

i

2

)
− rU, (2.4.3)

by applying forward differences in the first order derivatives and central differences in the
second order derivatives

∂U

∂x1
'
Umi+1,j − Umi,j

∆x
,

∂U

∂x2
'
Umi,j+1 − Umi,j

∆x
,

∂2U

∂x2
1

'
Umi+1,j − 2Umi,j + Umi−1,j

∆x2
,

∂2U

∂x2
2

'
Umi,j+1 − 2Umi,j + Umi,j−1

∆x2
,

∂2U

∂x1x2
'
Umi+1,j+1 + Umi−1,j−1 − Umi−1,j − Umi,j−1

4∆x2
.

Following Section 2.1 of Ref [31] we split the discretization of the operator L between

Page 53



Chapter 2 Section 2.4

Lx =
σ2

1

4

U
m+ 1

2
i+1,j − 2U

m+ 1
2

i,j + U
m+ 1

2
i−1,j

∆x2
+
σ2

2

4

Umi,j+1 − 2Umi,j + Umi,j−1

∆x2

+
1

2
σ1σ2ρ

Umi+1,j+1 + Umi−1,j−1 − Umi−1,j − Umi,j−1

4∆x2

+
1

2

(
r − σ2

1

2

)
U
m+ 1

2
i+1,j − U

m+ 1
2

i,j

∆x
+

1

2

(
r − σ2

2

2

)
Umi,j+1 − Umi,j

∆x
− 1

2
rU

m+ 1
2

ij

and

Ly =
σ2

1

4

U
m+ 1

2
i+1,j − 2U

m+ 1
2

i,j + U
m+ 1

2
i−1,j

∆x2
+
σ2

2

4

Um+1
i,j+1 − 2Um+1

i,j + Um+1
i,j−1

∆x2

+
1

2
σ1σ2ρ

U
m+ 1

2
i+1,j+1 + U

m+ 1
2

i−1,j−1 − U
m+ 1

2
i−1,j − U

m+ 1
2

i,j−1

4∆x2

+
1

2

(
r − σ2

1

2

)
U
m+ 1

2
i+1,j − U

m+ 1
2

i,j

∆x
+

1

2

(
r − σ2

2

2

)
Um+1
i,j+1 − U

m+1
i,j

∆x
− 1

2
rUm+1

ij

obtaining a two-stage full scheme

U
m+ 1

2
ij − Umij

∆t
= LxUm+ 1

2
ij ,

Um+1
ij − Um+ 1

2
ij

∆t
= LyUm+1

ij .

Up to this moment we have not considered the nonlinear operator G. However, we must
remember that after the linearization, this term only depends of the value of x and t and no
longer involves the different derivatives of U . Then, we decide to add this term on the second
stage of the procedure by redefining L̃y = Ly −G such that the whole framework becomes

Um+1
ij − Umij

∆t
= LxUm+ 1

2
ij + LyUm+1

ij −G (·) = LxUm+ 1
2

ij + L̃yUm+1
ij . (2.4.4)

2.4.2 Numerical results

In order to implement the framework proposed in Section 2.4.1, we select an specific type of
multi-asset option and a transaction costs function. First, we choose to price a best cash-or-
nothing option call on two assets. This option pays out a predefined cash amount K if assets
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S1 or S2 are above or equal to the strike price X. The closed-form formula is presented on
Ref [25] as

cbest = Ke−rT [M (y, z1;−ρ1) +M (−y, z2;−ρ2)] (2.4.5)

y =
ln (S1/S2) + σ2

2 T

σ
√
T

, σ =
√
σ2

1 + σ2
2 − 2σ1σ2ρ

z1 =
ln (S1/X) +

σ2
1
2 T

σ1

√
T

, z2 =
ln (S2/X) +

σ2
2
2 T

σ2

√
T

ρ1 =
σ1 − ρ
σ

, ρ2 =
σ2 − ρ
σ

where S1 and S2 are the stock prices, σ1 and σ2 are the volatilities, ρ is the correlation
between both assets, T is the maturity and M (a, b; ρ) is

M (a, b; ρ) =
1

2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
exp

[
−x

2 + y2 − 2ρxy

2 (1− ρ2)

]
dx dy. (2.4.6)

Second, given the nonlinear function G defined on (2.3.33), we choose an exponential
decreasing transaction costs function defined as

C (x) = C0 e
−k̃ x (2.4.7)

for each asset x. Hence, by recalling (2.2.17), we can see that

E
[
C
(√

∆t |Φi|
)
|Φi|

]
=

∫ +∞

0
C0 e

−k̃
√

∆tx 2x√
2πΘi

e−x
2/2Θi dx

= C0

√
2

π

∫ +∞

0
e−k̃
√

∆tx x√
Θi

e−x
2/2Θi dx

= C0

√
2

π

∫ +∞

0
e−k̃
√

∆tΘiy
√

Θiy e
−y2/2 dy

= C0

√
Θi

√
2

π

[
1− ek̃2∆tΘi/2 k̃

√
∆tΘi ERFC

(
k̃

√
∆tΘi

2

)]
.

Then,

G (x) = C0

√
2

π

2∑
i=1

exi

∆t

√
Θi

[
1− ek̃2∆tΘi/2 k̃

√
∆tΘi ERFC

(
k̃

√
∆tΘi

2

)]
. (2.4.8)
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In this Section we are going to analyze different aspects of the ADI algorithm implemented
and the dynamics of the general transaction cost model proposed. We focus on the following
three points:

1. Measure the impact of transaction costs in the option price.

2. Given an optimal number of iterations such that convergence is achieved, analyze the
sensitivity of the final output to the choice of ∆tTC .

3. Given the iteration procedure proposed in (2.4.1), determine the optimal number of n
such that the convergence is achieved and how the error diminishes as more steps are
added.

In Table 2.1 we present the parameters chosen for the numerical implementation. Three
different tests are then applied by varying the values of the stocks price, volatility, interest
rate and strike among others.

Parameters
Testing 1 Testing 2 Testing 3

Asset 1 Asset 2 Asset 1 Asset 2 Asset 1 Asset 2

σ 0.30 0.15 0.05 0.1 0.2 0.2
ρ 0.5 −0.3 0.2
r 0.08 0.02 0.1
T 1 year 1 year 1 year
K 5 8 6
X 30 40 15

∆x 1 1 1
∆tTC 1/261 1/261 1/261

C0 0.005 0.001 0.003

k̃ 1 0.5 0.7

Table 2.1: Numerical implementation parameters

Transaction Costs impact

Figure (2.1) to Figure (2.3) present the results for both transaction costs function and option
price with transaction costs at t = 0. By recalling the transaction costs function G in (2.4.2)
it can be noted that the costs are proportional to the assets spot price, the size of the second
derivatives (i.e. Gamma) of the option price and the volatilities of each asset.

Testing 1 is defined based on a strike at X = 30 with a premium paid at K = 5. Figure
(2.1a) shows an exponential transaction costs function where the maximum is reached around
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the strike value. This behavior is expected as the maximum of Gamma is found near the
at-the-money price. As these derivatives converge to zero when deep out-of-the-money or
in-the-money, the transactions costs function vanishes. Figure (2.1b) describes the dynamics
of the option price when considering the transaction costs function.
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(b) Option price at time t = 0.

Figure 2.1: Testing 1.

The results for Testing 2 framework are presented in Figure (2.2). It is defined a strike value
at X = 40, a premium paid at K = 8 and with two low volatile assets. The transaction costs
function presented in Figure (2.2a) shows a similar increasing pattern on its value up to the
at-the-money region. Moreover, the higher volatilty of Asset 2 is observed by noting that
transaction costs are higher when fixing a price for Asset 2 in comparison with Asset 1. As
the option gets out-of-the-money, the shape of the transaction costs function becomes more
symmetric and smoother.

Testing framework 3 is presented on Figure (2.3). Both assets are defined to have the same
volatility but almost uncorrelated. The strike price is fixed at X = 15 and the premium paid
is equal to K = 6. The symmetry observed in both Figures (2.3a) and (2.3b) are expected
due to the design of the testing. Again, the maximum of the transaction costs function is
reached when the prices are near the strike value and the converge to zero is seen when the
option is deeper out-of-the-money or in-the-money. The option prices reflect the complemen-
tary pattern by showing a decrease in its value when the option is near the strike price.

Sensitivity of the option to changes in ∆tTC

In this Section we study the sensitivity of the option price to changes in the size of the time-
step ∆tTC for rebalancing the replicant portfolio. By observing Equation (2.4.2), it can be
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Figure 2.2: Testing 2.
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Figure 2.3: Testing 3.
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seen that the transaction costs function tends to infinity if ∆TC tends to zero. Hence, we ex-
pect to see this results in the numerical testing. For this purpose, we ran Testing 2 framework
under 100 possible values of ∆TC ranging from 7.6E − 05 (approximately rebalancing every
29 minutes) to 0.007 (approximately rebalancing every 2 years). The results can be observed
in Figures 2.4 and 2.5.

Figure 2.4 presents two different plots which show two states of the option price. In the figure
of the left side it can be observed how the transaction costs behave when the price of Asset 1 is
equal to S1 = 15 and the parameter t = 0. It can be noted that the maximum value is reached
at-the-money with a transaction cost of almost 2. This maximum is also reached when ∆TC

is minimum. When the option becomes deeper in-the-money and out-of-the-money and ∆TC

increases, transaction costs tend to zero. A similar pattern is observed in the figure on the
right side. The main difference reside on how the transaction costs highly increase as the the
Asset 1 price is set as of S1 = 40. As Gamma is maximum near the at-the-money moneyness
of the option, transaction costs explode near this pricing area. As it can be seen, the costs
are of 34 when both prices are set as 40. This will be the case in which rebalancing is done
too often so that the option price becomes negative due to the high amount of transaction
costs payed.

The plot of the left side of Figure 2.5 shows the same dynamics for the case when Asset 1
price is equal to S1 = 55. These dynamics are similar to the one observed in the plot of the
left side of Figure 2.4. As Gamma decreases when prices are to low or to high, transaction
costs present the usual spike near the strike value. Moreover, this costs tend to zero as ∆TC

becomes larger and rebalancing is done less periodically. The plot of the right side helps us to
understand how far can the transaction costs increase. For this purpose, we fixed the prices
of both assets as of S1 = 40 and S2 = 40. Then, we plotted the value of the transaction
cost with respect to its time to maturity and the size of ∆TC . It can be observed that when
t = T , transaction costs are almost zero as the option price is the predefined payoff. As time
passes and the payoff is discounted, transaction costs increases as Gamma increases. When
we reach the actual date t = 0, transaction costs grow up to 34. This result help us to confirm
the following expected conclusion: As the frequency of rebalancing of the replicant portfolio
increases, transaction costs increase such that after a certain point of time, the option price
turns into negative and the model becomes ill-posed.

Convergence Analysis

The third item of the previous list involves measuring the convergence of the iterative frame-
work in terms of the differences between consecutive solutions. Our approach will follow from
the observation that the result of each iteration correspond to a square matrix. Hence, fixing
the last time step τ = T , we calculate the distance between two consecutive final results. For
this purpose, we use three different p-norms matrix as of: the 1 norm, the 2 norm and the ∞
norm. In summary, for each step n and solution Un, we calculate
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Figure 2.4: Testing 2 - The figure on the left shows the transaction costs function at time
t = 0 when Asset 1 price is equal to 15. The figure on the right shows the transaction costs
function at time t = 0 when Asset 1 price is equal to 40.
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Figure 2.5: Testing 2 - The figure on the left shows the transaction costs function at time
t = 0 when Asset 1 price is equal to 55. The figure on the right shows how the transaction
costs function explodes when the option is at-the-money.
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d
(
Un, Un−1

)
= ‖Un − Un−1‖p. (2.4.9)

Our objective is to see that this distance tends to zero as n increases. Figure (2.6) to (2.8)
present the plots of the results for the three scenarios. The figures plot the distance between
two consecutive solutions against the iteration step n + 1. In the right side, we provide
a table with all the numerical results up to iteration n = 11. In the first case, it can be
seen that the three norms exponentially decrease to zero and, between iteration 7 and 8,
convergence is achieved. In the second case, convergence is achieved even faster as by step 2,
the distance between both consecutive results is of order E − 05. The third case is similar as
the first scenario by noting that convergence is achieved at iteration 5 with a distance between
consecutive solutions of order E − 04.

‘
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Iteration Norm 1 Norm 2 Norm ∞
1 0.2727 0.1120 0.5187
2 0.1162 0.0738 0.3024
3 0.0442 0.0403 0.1460
4 0.0196 0.0189 0.0676
5 0.0076 0.0076 0.0267
6 0.0028 0.0027 0.0090
7 8.8E-4 8.6E-4 0.0027
8 2.5E-4 2.5E-4 7.5E-4
9 8.1E-5 6.7E-5 1.9E-4
10 2.3E-5 1.6E-5 4.5E-5

Figure 2.6: Convergence Analysis - Testing 1

2.5 Conclusion

Chapter 2 was dedicated to the presentation and deduction of an option pricing model for a
multiasset option considering a general transaction costs function.

Section 2.1 was devoted to provide an introduction of the past works that have been done
over the last years in relaxing multiple assumptions of the Black-Scholes model, including
specific transaction costs functions and modelling multi-asset financial instruments.

Section 2.2 was devoted to adapt the standard steps applied in the Black-Scholes model
by including the transaction costs on each time step. As a consequence, the dynamics of
the pricing model can be explained by a nonlinear parabolic PDE. One important feature of
this equation is that the ”type” of nonlinearity depends of the shape of the transaction costs
function. In fact, the nonlinear term is found to be proportional to the product of the asset
price by the expected value of the transaction costs value.
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1 0.0017 4.4E-4 8.6E-4
2 7.7E-5 1.8E-5 3.6E-5
3 2.6E-5 6.9E-7 1.2E-6
4 8.3E-8 2.1E-8 3.6E-8
5 2.4E-9 6E-10 9E-10
6 6E-11 1E-11 2E-11
7 1E-12 3E-13 5E-13
8 2E-14 8E-15 1E-14
9 7E-16 2E-16 2E-16
10 3E-16 1E-16 1E-16

Figure 2.7: Convergence Analysis - Testing 2
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Figure 2.8: Convergence Analysis - Testing 3
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Section 2.3 was devoted to the generalization of Leland’s condition in a multi-asset frame-
work with a general transaction costs function and proving the existence of a weak viscosity
solution of the corresponding nonlinear problem. By transforming the nonlinear operator into
a matricial form and forcing the nonlinear operator to be degenerate elliptic, it let us identify
the shape of the generalized Leland’s condition and showed that the original Leland’s condi-
tion is in fact a particular case of our result. The second result involved proving the existence
of a weak viscosity solution. For this purpose, we found a pair of sub and supersolutions
using the already known result of existence of the Black-Scholes problem. After determining
these solutions, we proved the existence of viscosity solution by using Perron’s method and
the correspondent comparison principle.

Section 2.4 was devoted to present a numerical framework to find a solution of the pricing
problem using numerical techniques. As our PDE had crossed-derivatives terms, we decided to
apply an ADI methodology. This choice let us split the numerical framework in two where both
steps involved inverting two tridiagonal matrices. Moreover, we applied an iterative framework
to solve the linearized equation. After defining the numerical scheme, we proposed three
different pricing problems to analyse and understand different aspects of the option dynamics
and the numerical framework. Moreover, we chose to price an specific multi-asset option
from which an analytical solution is known for the model without transaction costs. The first
testing involved analysing the transaction costs impact in the option price. We showed that
the results are in line with the factors that form the transaction costs. When Gamma reaches
its maximum correspond to the spot price in which transaction costs are higher. Moreover, as
the option involves two different assets, the transaction costs pattern is similar to the Gamma
of each asset. The second testing helped us to understand the sensitivity of the option price
to changes in the frequency of rebalancing of the replicant portfolio. We observed results that
are in line with the shape of the transaction costs function. As the frequency of rebalancing
increases, transaction costs increase. Hence, the size of the frequency of rebalancing becomes
crucial to define a well-posed problem and obtain positive option prices. The last testing
was a convergence analysis. By using a metric that measures the matrix distance between
consecutive solutions, we wanted to see the how the iterative framework converged after a
several amount of steps. By considering the three testing frameworks proposed, the iterative
method is seen to converge after not more than seven iterations.

2.6 Resumen del caṕıtulo

En el Caṕıtulo 2 presentamos y deducimos un modelo de valuación de opciones financieras de
múltiples activos considerando una función de costos transacción general.

En la Sección 2.1 incluimos una introducción presentando diversos resultados de trabajos
relacionados con el nuestro. Incluimost trabajos que muestran como modelar la valuación
de opciones financieras al relajar los supuestos de Black-Scholes, al incluir diversos tipos de
funciones de costos de transacción y al modelar instrumentos financieros con multiples activos
como subyacentes.

En la Sección 2.2 nos abocamos a adaptar la metodoloǵıa estandar de Black-Scholes al
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incluir costos de transacción en cada paso temporal. De esta forma, el modelo obtenido resulta
ser una ecuación diferencial parabólica no lineal. Es importante notar que la forma que tenga
la función de costos de transacción influirá en el tipo de no linealidad de la ecuación. Además,
notamos que el término no lineal será siempre proporcional al producto del valor del activo
por el valor esperado de los costos de transacción.

En la Sección 2.3 mostramos como la generalización de la condición de Leland permite
definir un operador no lineal eĺıptico degenerado y aśı demostrar la existencia de al menos
una solución viscosa. Al reescribir el operador no lineal en forma matricial, llegamos a la
condición de Leland generalizada y observamos como la condición original no es más que un
caso particular de nuestra condición. El segundo resultado consistió en demostrar la existen-
cia de al menos una solución viscosa. Para ello, considerando la existencia de solución del
problema lineal de Black-Scholes, construimos un par de sub y supersoluciones. Finalmente,
utilizamos el método de Perron y un correspondiente principio de comparación para demostrar
la existencia de solución.

En la Sección 2.4 presentamos el esquema numérico utilizado para encontrar una solución
aproximada de nuestro problema de valuación. Dado que nuestra ecuación diferencial presenta
segundas derivadas cruzadas, decidimos utilizar el algoritmo ADI. Esta elección nos permitió
dividir en dos los pasos del algoritmo tal que en cada paso se inviertan matrices tridiagonales.
Este algoritmo fue utilizado para resolver un problema iterativo que resultó de linealizar la
ecuación original. El algoritmo fue probado bajo tres distintos escenarios económicos para
entender la naturaleza del problema de valuación y la convergencia del método numerico.
Elegimos valuar una opción financiera determinada para la cual conoćıamos su fórmula cerrada
para el modelo sin costos de transacción. El primer testeo realizado consistió en entender
como los costos de transacción impactan en la valuación de la opción financiera. Observamos
que los resultados se corresponden con el modelo teórico: los costos son máximos cuando
Gamma es máxima. El segundo testeo nos permitió analizar la sensibilidad del precio de
la opción ante cambios en la frecuencia de rebalanceo del portfolio replicante. Nuevamente,
los resultados se condicen con el modelo teórico. A medida que la frecuencia de rebalanceo
aumenta, los costos de transacción aumentan. Aśı, la frecuencia de rebalanceo resulta ser
un factor crucial a la hora de definir una ecuación bien definida y aśı tener siempre precios
positivos. El último testeo resultó ser una análisis de convergencia. Para ello, medimos la
distancia entre dos resultados consecutivos del proceso iterativo. Observamos que en los tres
escenarios planteados, el esquema iterativo converge con menos de siete iteraciones.
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Counterparty valuation adjustment
with transaction costs

This chapter is devoted to the presentation and explanation of our second work Ref [6].

3.1 Introduction

3.1.1 Counterparty Credit Risk

In Section 1.1 we explained the standard steps followed to price a financial derivative under a
broad set of assumptions. In this chapter we are going to work under a framework in which the
credit riskiness of both the issuer of the contract and the counterparty are consider. So let us
go one step back and provide an example of the type of pricing problem that we may want to
study. Let us suppose that there exists two parts in a contract. Party A will buy a call option
of certain stock S with strike K to party B. At maturity, two possible situations might occur:
If the value of the stock S lies below the strike value, the option worth nothing and investor
A will lose just the money used to buy the calls. However, if the asset price surpasses the
strike value, investor B must have the stock (or the equivalent money) to close the contract
with A. So, at this point is when we modify the standard Black-Scholes framework and ask
ourselves: what happens if B doesn’t have the stock or the money to close the contract? The
answer to this equation depends on where the contract has been set. If the contract has been
traded in an exchange (i.e. NYSE, NASDAQ, etc), each party is required to have a margin
account so that the margin can be used when the party cannot close the contract. However,
if the contract has been traded over-the-counter (OTC) there are no disclosure requirements
and any possible contract and condition can be defined. In this type of scenarios is when the
counterparty credit risk becomes important on any pricing framework.

As it is explained in Ref [23], the counterparty credit risk is the risk that a counterparty
defaults prior to the expiration of the contract and fails to make future payments. This
type of risk is only present when one counterparty has an exposure to the other. We will
define the exposure at default (EAD) as the total amount owed by the defaulting party to the
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non-defaulting party

EAD = max (V, 0) (3.1.1)

where V is the total value. Given the exposure at the time of default, the amount recovered
is measured as a percentage R, also known as the recovery rate. Then, the recovered amount
is given by

R× EAD = R×max (V, 0) . (3.1.2)

Another component that we need to consider is some measure that help use to define the
probability of default. We define the hazard rate λ (t) as the instantaneous probability of
default of a security. Then, we will define the probability of default at time τ as of

P (τ ≤ T ) = 1− exp

(
−
∫ T

τ
λ (s) ds

)
(3.1.3)

The expected loss in a financial contract can be obtained by multiplying the exposure by
the loss given default by the probability of default, i.e.

EL = PD × LGD × EAD = PD × (1−R)× EAD. (3.1.4)

During this chapter, we are going to study the credit risk that is present during the
existence of a financial contract. We define the Credit Valuation Adjustment or CVA to the
market price of credit risk on a financial instrument that is marked-to-market, usually an OTC
derivative. The CVA can be defined as the difference between the price of the instrument
including credit risk and the price where both counterparties are free of credit risk. We will
denote CVA as a positive value such that it represents a costs and a lost of value to the
financial contract. Hence, the value of the option V can be denoted as

V = VBS − CV A (3.1.5)

where VBS is the price of the option under the Black-Scholes framework. An additional
term can be added to consider the credit risk of the issuer. This value is known as Debit
Valuation Adjustment or DVA. The DVA acts oppositely as the CVA by adding value to the
option when the issuer risk increases. Then, the adjusted option price is given by

V = VBS − CV A + DV A
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where CV A is a cost and DV A is a benefit. We will call unilateral CVA when only the
the counterparty credit risk is considered and bilateral CVA when the issuer credit risk is also
considered.

In the following two Sections we will study two possible ways to calculate the CVA. The
first one is following the steps applied in the Black-Scholes model in Section 1.1.2 by creating
the correspondent replicant portfolio. The second way of deriving CVA is by calculating the
expectation of the future payoffs of the contract.

3.1.2 CVA calculation by Replication

Given the definitions of CVA and DVA provided above, we are going to show one methodology
that can be used to find both values. This methodology will be similar to the Black-Scholes
replication framework used previously in Section 1.1.2 using the work of Ref [22] and Ref [13].
Let us recall (3.1.5) and rename the functions as of

V̂ = V + U (3.1.6)

where V̂ is the value of a contract including the CVA, V the value without considering
the counterparty risk and U the CVA.

Let us create a portfolio Π that replicates the price of the contract including the underlying
asset S, a zero-coupon counterparty bond PC and β amounts of money. Moreover, the market
contains a zero-coupon risk-free bond PR. The dynamics of these three instruments are given
by

dS = µSSdt+ σSSdW

dPC = rCPCdt− PCdJC (3.1.7)

dPR = rPRdt

where µS and σS are the mean and volatility of the underlying asset S, r is the risk-free
interest rate, rC is the yield of the counterparty bond of C and JC is a point process that
jumps from 0 to 1 on the default of C.

We define the value of the replicant portfolio Π as of

−V̂ (t) = Π (t) = δ (t)S (t) + αC (t)PC (t) + β (t) (3.1.8)

where δ (t) is the amount of units held of S (t), αC (t) is the amount of units held of PC (t)
and β (t) are units of cash.

Given that we want the portfolio to be self-financing, we required that

−dV̂ (t) = δ (t) dS (t) + αC (t) dPC (t) + dβ (t) (3.1.9)
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where dβ (t) is decomposed into dβ (t) = dβS (t) + dβC (t) with dβS being difference
between the dividend income γS and the financing cost qS of purchasing δ (t) units of S and
dβC being the financing cost of short-selling the counterparty bond. Hence, dβ (t) can be
decomposed into

dβ (t) = δ (γS − qS)Sdt− rαCPCdt. (3.1.10)

Then, we can rewrite equation (3.1.9) in terms of the components of dβ

−dV̂ = δdS + αCdPC + δ (γS − qS)Sdt− rαCPCdt. (3.1.11)

Moreover, we can use the dynamics model for each financial instrument presented in (3.1.7)
to get

−dV̂ = [(γS − qS) δS + (rC − r)αCPC ] dt− αCPCdJC + δdS (3.1.12)

Now we can recall equation (1.1.4) and apply Itô’s formula to the process V̂ in order to
obtain

dV̂ =
∂V̂

∂t
dt+

∂V̂

∂S
dS +

1

2
σ2S2∂

2V̂

∂S2
dt+4V̂C dJC (3.1.13)

where 4V̂C is calculated based on default conditions. In Ref [13] it is showed that

4V̂C = V̂ (t, S, 0, 1)− V̂ (t, S, 0, 0) = −V̂ +RCM
+ + M− (3.1.14)

Finally, we can match the results found in (3.1.12) and (3.1.13). We can eliminate all the
stochastic components of the portfolio by taking

δ = −∂V̂
∂S

αC =
4V̂C
PC

= − V̂ − (M− +RCM
+)

PC
(3.1.15)

where M is the value of the financial contract at default. Hence, we obtain the PDE that
governs the price of a financial contract under counterparty credit risk as

∂V̂

∂t
+

1

2
σ2S2∂

2V̂

∂S2
+ (qS − γS)S

∂V̂

∂S
− rV̂ + (rC − r)4 V̂C = 0

V̂ (T, S) = H (S) (3.1.16)
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If we assume that the value at default M is equal to V̂ , we can use the Feynman-Kac
theorem to derive the value of CVA. In fact, if we decompose V̂ = V + U , we get that

∂U

∂t
+

1

2
σ2S2∂

2U

∂S2
+ (qS − γS)S

∂U

∂S
− rU − (1−RC) (rC − r) (V + U)+ = 0

U (T, S) = 0 (3.1.17)

so that by Feynman-Kac theorem (Theorem 1.1.8) we can deduce the following non-linear
integral equation

U (t, S) = − (1−RC)

∫ T

t
(rC − r)Dr (t, u)E

[
(V (u, S (u)) + U (u, S (u)))+] du (3.1.18)

where Dr (t, u) is a discount factor between times t and u given by

Dr (t, u) = exp

(
−
∫ u

t
r (v) dv

)
. (3.1.19)

3.1.3 CVA calculation by Expectation

The idea here is to follow similar steps as the ones applied in Section 1.1.3 using the work
of Ref [22] and Ref [24]. For this purpose we may assume that parties A and B enter into a
contract with discounted value V (t, T ) with maturity T in the absence of default, that only
the counterparty credit risk of party B is considered and that the event of default occurs at
time τ . If the event of default happens after the maturity of the contract the payoff of the
contract is essentially

Iτ>TV (t, T ) (3.1.20)

On the other side, if the default of counterparty B occurs before the maturity of the
contract, the payoff of the contract is equal to the value of the position before the default
time plus the recoverable part of the defaulted position. Hence, we can write this payoff as of

Iτ≤TV (t, τ) + Iτ≤T
(
RV (τ, T )+ + V (τ, T )−

)
(3.1.21)

where x+ = max (x, 0) and x− = min (x, 0). Then, if we put together the results from
equations (3.1.20) and (3.1.21) and use the pricing framework by expectation explained in
Section 1.1.3, we have that the price of the risky contract under the risk-neutral measure is

Page 69



Chapter 3 Section 3.1

V̂ (t, T ) = E [V (t, τ) Iτ<T + V (t, T ) Iτ≥T |Ft] + E
[(
RV (τ, T )+ + V (τ, T )−

)
Iτ<T |Ft

]
= E [V (t, τ) Iτ<T + V (t, T ) Iτ≥T |Ft] + E

[(
RV (τ, T )+ + V (τ, T )− V (τ, T )+) Iτ<T |Ft]

= E [V (t, τ) Iτ<T + V (t, T ) Iτ≥T |Ft] + E
[(

[R− 1]V (τ, T )+ + V (τ, T )
)
Iτ<T |Ft

]
Then, if we note that V (τ, T ) = V (t, T ) Iτ<T +V (t, T ) Iτ≥T , we get the complete formula

for the risky option price

V̂ (t, T ) = E
[
V (t, T ) Iτ<T + V (t, T ) Iτ≥T + (R− 1)V (τ, T )+ Iτ≥T |Ft

]
= V (t, T )− E

[
(1−R)V (τ, T )+ Iτ≥T |Ft

]
(3.1.22)

Hence, if we recall equation (3.1.5) and discard the assumption that V (t, T ) is already
discounted, we define the value of the unilateral CVA as of

CV A = E
[
D (t, τ) (1−R)V (τ, T )+ Iτ≥T |Ft

]
(3.1.23)

3.1.4 More work in CVA modelling

Although the use of CVA is recent, multiple works and frameworks have been developed
over the years. In this Section we will recall different papers in which the authors show how
to define and solve the CVA calculations under different scenarios and for different OTC
derivatives.

In Ref [2], the authors derive the bilateral counterparty valuation adjustment terms by
decomposing the un-defaultable portfolio into a set of binary states. Given defined the price
of a default free portfolio as of V (t) and τ, τ ′ the first-time-to-default of both parties, we can
extend the price of that portfolio as of

V (t) = V
(
t|τ ′ > t, τ > t

)
+ V

(
t|τ ′ < t, τ < t

)
+ V

(
t|τ ′ < t, τ > t

)
+ V

(
t|τ ′ > t, τ < t

)
= Vs

(
t, τ, τ ′

)
+ Vd

(
t, τ, τ ′

)
(3.1.24)

where Vs and Vd are the correspondent surviving and defaulted portolio’s value which are
defined as of

Vs
(
t, τ, τ ′

)
= V (t) Iτ ′>t,τ>t

Vd
(
t, τ, τ ′

)
= V (t)

[
Iτ ′<t,τ<t + Iτ ′<t,τ>t + Iτ ′>t,τ<t

]
(3.1.25)

Two more decompositions on the surviving portfolio can be uses to expand the formula
for V (t). The first expands in two binary states regarding the incoming or outgoing cash
flows as of
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Vs
(
t, τ, τ ′

)
= V +

s

(
t, τ, τ ′

)
− V −s

(
t, τ, τ ′

)
(3.1.26)

Given a time horizon η to be δt further away of t such that η = t+ δt, default times can
fall before or after η. Then

1+ = Iτ ′<η,τ>τ ′ + Iτ ′<η,τ<τ ′ + Iτ ′>η

1− = Iτ<η,τ ′>τ + Iτ<η,τ ′<τ + Iτ>η. (3.1.27)

Hence, the defaulted portfolio can be written as of

Vs
(
t, τ, τ ′

)
= V +

s

(
t, τ, τ ′

)
1+ − V −s

(
t, τ, τ ′

)
1− (3.1.28)

The last expansion is done to include the recovery rates of both counterparties. If R and
R′ are both recovery rates, formula (3.1.28) can be expanded as of

Vs
(
t, τ, τ ′

)
=V +

s

(
t, τ, τ ′

) [
Iτ ′<η,τ>τ ′

(
1−R′

)
+ Iτ ′<η,τ>τ ′R

′ + Iτ ′<η,τ<τ ′ + Iτ ′>η
]

− V −s
(
t, τ, τ ′

) [
Iτ<η,τ ′>τ (1−R) + Iτ<η,τ ′>τR+ Iτ<η,τ ′<τ + Iτ>η

]
(3.1.29)

Then, if we use the results of equation (3.1.25) into (3.1.29), we get that the value of the
survival portfolio is given by

Vs
(
t, τ, τ ′

)
=V + (t) Iτ ′>t,τ>tIτ ′<η,τ>τ ′

(
1−R′

)
(3.1.30)

− V − (t) Iτ ′>t,τ>tIτ<η,τ ′>τ (1−R) (3.1.31)

+ V + (t) Iτ ′>t,τ>t
[
Iτ ′<η,τ>τ ′R

′ + Iτ ′<η,τ<τ ′ + Iτ ′>η
]

(3.1.32)

− V − (t) Iτ ′>t,τ>t
[
Iτ<η,τ ′>τR+ Iτ<η,τ ′<τ + Iτ>η

]
(3.1.33)

The authors interpret this equation so that the contributions to the value of the surviving
portfolio come from two sources of loss (3.1.30) and (3.1.31) and two sources of recovery
(3.1.32) and (3.1.33) of both counterparties. Then, by defining V ∗s (t, τ, τ ′) to be the net
total of recovery values for all cash flows between t and η, conditional on both counterparties
surviving until t, the authors define CVA as the difference between V ∗s (t, τ, τ ′) and Vs (t, τ, τ ′)
so that

CV A
(
t, τ, τ ′

)
=− V + (t) Iτ ′>t,τ>t

[
Iτ ′<η,τ>τ ′R

′ + Iτ ′<η,τ<τ ′ + Iτ ′>η
]

(3.1.34)

+ V − (t) Iτ ′>t,τ>t
[
Iτ<η,τ ′>τR+ Iτ<η,τ ′<τ + Iτ>η

]
(3.1.35)
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Other important work in CVA modelling and OTC pricing has been done by Ref [11] and
Ref [10].

In the first article Ref [11] they consider the counterparty risk for a credit-default-swap
(CDS) with correlation defaults of the counterparty and CDS reference credit. A CDS is a
contract that works as an insurance. The buyer makes quarterly payments to the seller so
that it will compensate the buyer with certain payoff in an event of credit default.

We denote τ1 the default time of the CDS, by τ2 the default time of the counterparty
and the investor who considers the transaction with the counterparty to be default-free. Let
us call T the maturity of the contract so that if τ2 ≤ T , the counterparty cannot fulfil its
obligations and the following could happen: if the net present value (NPV, which is the value
of the contract discounted at time t) is negative for the investor, it is completely paid by the
investor itself. If it is positive, only a recovery fraction R of the NPV is exchanged. If we
denote ΠD (t, T ) to be the sum of all payoff terms between t and T discounted back at t and
subject to counterparty default risk and Π (t, T ) the analogous without considering the same
risk, the following formula is found valid

E
[
ΠD (t, T ) |Ft

]
= E [Π (t, T ) |Ft]− (1−R) E

[
It≤τ2≤TD (t, τ2)NPV (τ2)+ |Ft

]
= E [Π (t, T ) |Ft]− CV A (3.1.36)

We can approximate the formula defined in (3.1.36) by generating a time grid T0, T1, ..., Tb =
T and set for convenience t = 0 so that

E
[
ΠD (0, Tb)

]
= E [Π (0, Tb)]− (1−R)

b∑
j=1

E
[
ITj−1≤τ2≤TjD (0, Tj)

(
E
[
Π (Tj , Tb) |FTj

])+]
(3.1.37)

where the approximation consists in postponing the default time to the first Ti following
τ2. In order to apply the formula defined in (3.1.36) to price a CDS contract, the following
assumption is done. The stochastic intensity model is set as a CIR++ model so that

λj (t) = yj (t) + Φj (t, β) (3.1.38)

so that Φ is a free deterministic function and yj (t) is given by

dyj (t) = k (µ− yj (t)) dt+ ν
√
yj (t)dWj (t) (3.1.39)

with Wj correlated brownian motions. From equation (3.1.37) it can be seen that the only
non trivial term to compute is
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E
[
ITj−1≤τ2≤Tj

(
E
[
Π (Tj , Tb) |FTj

])+]
(3.1.40)

Under these assumption, the authors show that this term which is at the same time the
Tj-credit adjustment for counterparty risk equals to

E
[
ITj−1≤τ2≤Tj

(
E
[
Π (Tj , Tb) |FTj

])+]
= E

[
CDSa,b (Tj , S)+ E{ITj−1≤τ2≤Tj ,τ1>Tj |FTj}

]
where CDSa,b (Tj , S) is given by

CDSa,b (Tj , S) =S

[
−
∫ Tb

max(Ta,Tj)
D (Tj , t)

(
t− Tγ(t)−1

)
dtQ

(
τ1 ≥ t|FTj

)
+

b∑
max(a,j)+1

D (Tj , Ti)αiQ
(
τ1 ≥ Ti|FTj

) (3.1.41)

+ (1−R)

[∫ Tb

max(Ta,Tj)
D (Tj , t) dtQ

(
τ1 ≥ t|FTj

)]
(3.1.42)

with D (Tj , t) is the discounting factor, Tγ(t) is the first Tj following t, Q is the risk neutral
measure, S is the CDS premium rate and αi is the intensity of the jumps of the hazard rate
(can be taken equal to zero if no jumps are assumed).

This framework is generalized in the second article Ref [10] by modelling a bilateral coun-
terparty risk scenario. Equation (3.1.36) is generalized so that the bilateral CVA is given
by

BR-CV A (t, T ) = (1−R2)E
[
Iτ2≤τ0≤T,τ2≤T≤τ0D (t, τ2)NPV (τ2)+ |Ft

]
− (1−R0)E

[
Iτ0≤τ2≤T,τ0≤T≤τ2D (t, τ0)

[
−NPV (τ0)+] |Ft] (3.1.43)

where τ0 is the investor’s default time and τ2 is the counterparty’s default time. Hence,
the bilateral CVA for a CDS contract with stochastic hazard rates is

BR-CV A-CDSa,b (t, S) = (1−R2)E
[
Iτ2≤τ0≤T,τ2≤T≤τ0D (t, τ2)

[
Iτ1>τ2CDSa,b (τ2, S)

]+ |Ft]
− (1−R0)E

[
Iτ0≤τ2≤T,τ0≤T≤τ2D (t, τ0)

[
−Iτ1>τ0CDSa,b (τ0, S)

]+ |Ft]
(3.1.44)

In Ref [12] different methods and formulas for modelling bilateral CVA on interest-rate
portfolios are introduced to expand the coverage of the results obtained in Ref [10]. Interest
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rates are modelled using a G2++ model so that the dynamics of the short-rate process under
the risk-neutral measure are given by

r (t) = x (t) + z (t) + Φ (t, α) (3.1.45)

where α is a set of parameters, Φ is a deterministic function with Φ (0, α) = r0 and the
processes x and z are Ft adapted and satisfy

dx (t) = −ax (t) dt+ σdZ1 (t) (3.1.46)

dy (t) = −bz (t) dt+ ηdZ2 (t) (3.1.47)

with Z1 and Z2 two brownian motions with instantaneous correlation ρ12. Hazard rates
are again modelled following equation (3.1.38) where the correspondent brownian motions
is correlated with Z1 and Z2. In their paper, the authors analyze the impact of correla-
tions, interest-rate curve, credit spread levels and volatility scenarios on the bilateral CVA
calculation for an interest rate swap (IRS).

A different approach is taken by Ref [14] and further on with Ref [15] and Ref [16]. In
their works, the author develop a reduced-form backward stochastic differential equations
(BSDE) approach to the problem of pricing and hedging of the CVA by allowing the presence
of multiple funding constraints.

The third approach taken and the one that we will consider as a starting point of our
work is the one developed by Ref [13] in which they derive a market model similar to the one
presented in Section 3.1.2. In their work they find the PDE that governs the dynamics of a
derivative contract Ṽ on an asset S between a seller B and a counterparty C that may both
default as of

∂V̂

∂t
+

1

2
σ2S2∂

2V̂

∂S2
+ (qS − γS)S

∂V̂

∂S
− rV̂ = (1−RB)λBṼ

− + (1−RC)λC Ṽ
+ + sF Ṽ

+

(3.1.48)

where RB and RC are the correspondent recovery rates, λB and λC the correspondent
hazard rates and sF is the difference between the seller funding rate and the risk-free-rate.
Hence, by applying the Feynman-Kac theorem (1.1.8) the found that the value of the CVA is
given by

U (t, S) =− (1−RB)

∫ T

t
(rB − r)Dr (t, u)E

[
(V (u, S (u)) + U (u, S (u)))−

]
du

− (1−RC)

∫ T

t
(rC − r)Dr (t, u)E

[
(V (u, S (u)) + U (u, S (u)))+] du

−
∫ T

t
sF (u)Dr (t, u)E

[
(V (u, S (u)) + U (u, S (u)))+] du
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where Dr (t, u) is the same as of in Section 3.1.2.

Our work expands the framework of Burgard and Kjaer in Ref [13] to include the transac-
tion costs that arise of trading the underlying assets and both the issuer and the counterparty
bonds. We propose an initial constant transaction cost function proportional to the amount
of assets traded. As a consequence, we derive a nonlinear PDE that extends the results found
in Ref [13] and prove the existence of solution by applying the Schauder Fixed-Point theo-
rem. In the second part of the work, we develop a numerical approach to solve the PDE
by considering a non-uniform grid on the spatial variable. The main greeks of the option
(Delta, Gamma, Rho and Vega) are calculated and analyzed to understand how both the
value adjustments and transaction costs affect the behavior of the option price. Nonetheless,
we perform a sensitivity analysis on the remaining parameters (hazard rate, recovery rates,
etc) to complete the study of the option price dynamics.

3.2 The market model

As we discussed in the previous Section, the seminal paper of Ref [13] derives the PDE for
the value of a financial derivative considering both bilateral counterparty risk and funding
costs. In order to build their market model they propose a economy consisting of a risk-free
zero-coupon bond, two default risky zero-coupon bond of party B and C and a spot asset with
no default risk. B will refer to the seller and C to the counterparty. Notation will be followed
from the original work Ref [13] .

The dynamics of the four tradable assets under the historical probability measure are
defined as follows: 

dPR = PR r dt,

dPB = PB rB dt − PB dJB,

dPC = PC rC dt − PC dJC ,

dS = µS dt + σ S dWt.

The default risky zero-coupon bonds are modeled by considering both rB and rC interest
rates and JB and JC the two independent point processes that jump from 0 to 1 on default
of B and C respectively. The default risk-free zero-coupon bond is a deterministic process
with drift equal to r and the spot asset is modeled following a geometric brownian motion
with drift µ and volatility σ. Among this Section the parameters r, rB, rC , µ and σ are held
positive and constant. The value of the derivative at time t will be denoted V̂ (t, S, JB, JC)
and depends on the spot S and the default states JB and JC . In our calculations we will drop
the dependencies of S, JB and JC . Also we will recall the following notation which will be
useful in further steps:

x+ = max (x, 0)

x− = min (x, 0) .
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In order to derive the price of a financial option V̂ , we are going to adapt the standard
Black-Scholes framework discussed in Section 1.1.2 and further applied in Ref [13] to consider
the Leland’s approach already used in Chapter 2. We will have to define three transaction
costs functions which will be needed to calculate the costs that arises from trading both risky
zero-coupon bonds and the underlying instrument.

Let us start by creating the self-financing portfolio which covers all the underlying risk
factors that hedges the option. Let Π (t) be the sellers portfolio which consists of δ (t) units
of S (t), αB (t) units of PB (t), αC (t) units of PC (t) and β (t) units of cash. For hedging
purposes we set Π (t) + V̂ (t) = 0 and

−V̂ (t) = Π (t) = δ (t) S (t) + αB (t) PB (t) + αC (t) PC (t) + β (t) . (3.2.1)

We define the transaction costs function for both default risky bonds PB and PC and the
spot asset S as follows: 

TCB (t, PB) = CB |αB (t) |PB (t) ,

TCC (t, PC) = CC |αC (t) |PC (t) ,

TCS (t, S) = CS |δ (t) |S (t)

where CB, CC and CS are positive constants. This definition of transaction costs is the
standard approach applied initially in Ref [33] and is the initial step before creating more
complex dynamics. In this case, the costs are defined to be proportional to the amount of
assets traded multiplied by the price of each asset. For the purpose of enhancing clarity, we
drop the dependencies on every function.

By forcing the portfolio to be self-financing, we find that

−dV̂ = δ dS + αB dPB + αC dPC + dβ. (3.2.2)

where dβ is decomposed as dβ = dβS + dβF + dβC corresponding to the variations in
the cash position due to each of the three assets. In this step we consider the effect of the
transaction cost in the hedging strategy. On each time step, there would be a decrease in the
cash account because of the cost of buying or selling a different amount of assets. Hence, the
original calculations of Ref [13] are modified as follows:

• The share position provides a dividend income, a financing cost and a transaction cost.
The variation in the position is found to be

dβS = δ γS S dt− δ qS S dt− dTCS (3.2.3)

• After the own bonds are purchased, if any surplus in cash is available, it must earn the
free-risk-rate r. If borrowing money, the seller needs to pay the rate rF . In this case,
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transaction costs appear when calculating the surplus after the own bonds purchasing.
The variation in this position is determined by

dβF = r
(
−V̂ − αB PB − TCB

)+
dt+ rF

(
−V̂ − αB PB − TCB

)−
dt

= r
(
−V̂ − αB PB − TCB

)
dt+ sF

(
−V̂ − αB PB − TCB

)−
dt (3.2.4)

where sF = rF − r is the funding spread.

• Finally, a financing cost due to short-selling the counterparty bond and its related
transaction costs are considered for calculating the variation in the cash counterparty
position as follows:

dβC = −αC r PC dt− dTCC . (3.2.5)

By applying equations (3.2.3), (3.2.4) and (3.2.5) in (3.2.2), we obtain

−dV̂ =δ dS + αB PB (rB dt− dJB) + αC PC (rC dt− dJC)− dTCC − dTCS + (3.2.6)[
r
(
−V̂ − αB PB − TCB

)+
+ rF

(
−V̂ − αB PB − TCB

)−
+ δ (γS − qS) S

− αC r PC ] dt

−dV̂ =

[
−rV̂ + sF

(
−V̂ − αB PB − TCB

)−
+ (rB − r)αB PB + (rC − r)αC PC (3.2.7)

− r TCB + δ (γS − qS)] dt− dTCS − dTCC + δ dS − αB PB dJB − αC PC dJC .

In this step we will need to apply the Itô’s formula to the process V̂ . However, we can
observe that the process V̂ contains a jump process within. Hence, we will need to define first
the Itô’s formula adapted to jump processes.

Definition 3.2.1 (Itô’s formula for single jumps). If X is an stochastic process satisfying the
stochastic differential equation dXt = µdt + σdWt − JdN where N is a Poisson process and
J is the size of the jump and f is a deterministic twice continuously differentiable function,
then Yt = f (Xt) is also a stochastic process and is given by

dYt =

(
µf ′ (Xt) +

1

2
σ2f ′′ (Xt)

)
dt+

(
σf ′ (Xt)

)
dWt + [f (Xt + J)− f (Xt)] dN (3.2.8)

We can use this adapted Itô’s formula on our function V̂ that depends on both possible
jumps JB and JC . We denote 4V̂B and 4V̂C to the difference in the price before and after
the jumps. In Ref [13] it is showed that
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4V̂B = V̂ (t, S, 1, 0)− V̂ (t, S, 0, 0) = −V̂ + V̂ + + RB V̂
−

4V̂C = V̂ (t, S, 0, 1)− V̂ (t, S, 0, 0) = −V̂ +RC V̂
+ + V̂ −

Then, we observe that

dV̂ =
∂V̂

∂t
dt+

∂V̂

∂S
dS +

1

2
σ2S2∂

2V̂

∂S2
dt+4V̂B dJB +4V̂C dJC (3.2.9)

Hence, if we add together (3.2.7) and (3.2.9) we can clear out the values of δ, αB and αC
in order to hedge the risks related to the corporate bonds and the spot asset. Then, we obtain
that

δ = −∂V̂
∂S

(3.2.10)

αB =
−V̂ + V̂ + + RB V̂

−

PB
(3.2.11)

αC =
−V̂ +RC V̂

+ + V̂ −

PC
(3.2.12)

so that the formula becomes

0 =

[
−rV̂ + sF

(
−V̂ − αB PB − TCB

)−
+ (rB − r)αB PB + (rC − r)αC PC − r TCB

+δ S (γS − qS) +
∂V̂

∂t
+

1

2
σ2S2∂

2V̂

∂S2

]
dt− dTCS − dTCC (3.2.13)

By recalling the definition of the transaction costs, we can compute dTCS and dTCC .
Then, for the calculation of the transaction costs of the spot asset, we recall the value of δ
and note that

dTCS = CS |dδ|S ∼ CS

∣∣∣∣∣∂2V̂

∂S2

∣∣∣∣∣ σ S2
√
dt

√
2

π
(3.2.14)

where the approximation is made by taking the expected value of |dδ| and taking the

lowest order O
(√

∆t
)

as it follows

E (|dδ|) = E

(∣∣∣∣∣∂2V̂

∂S2

∣∣∣∣∣ dS
)

=

∣∣∣∣∣∂2V̂

∂S2

∣∣∣∣∣σ S√dtE [Φ] (3.2.15)
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and setting Φ as a standard normal random variable.

The variation of the transaction costs of the counterparty bond position is computed by
applying the same rationale as before but over |dαC | in this case. Then,

dTCC = CC |dαC |PC ∼ CC

∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣ σ S√dt
√

2

π
(3.2.16)

where on this occasion the approximation is obtained by taking the expected value of
|dαC | as it follows

E (|dαC |) = E

( ∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣ dS
)

=

∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣σ S√dtE [Φ]

and setting again Φ as a standard normal random variable.

By recalling (3.2.14) and (3.2.16) and applying those computations in (3.2.13), we obtain
the following nonlinear parabolic partial derivative equation

0 =

[
−rV̂ + sF

(
−V̂ − αB PB − TCB

)−
+ (rB − r)αB PB + (rC − r)αC PC − r TCB

+δ S (γS − qS) +
∂V̂

∂t
+

1

2
σ2S2∂

2V̂

∂S2

]
dt− CS

∣∣∣∣∣∂2V̂

∂S2

∣∣∣∣∣ σ S2
√
dt

√
2

π

− CC

∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣ σ S√dt
√

2

π

0 =

[
−rV̂ + sF

(
−V̂ − αB PB − CB

∣∣∣−V̂ + V̂ + + RB V̂
−
∣∣∣)− + (rB − r)αB PB

+ (rC − r)αC PC − r
(
CB

∣∣∣−V̂ + V̂ + + RB V̂
−
∣∣∣)− ∂V̂

∂S
S (γS − qS) +

∂V̂

∂t

+
1

2
σ2S2∂

2V̂

∂S2

]
dt− CS

∣∣∣∣∣∂2V̂

∂S2

∣∣∣∣∣ σ S2
√
dt

√
2

π

− CC

∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣ σ S√dt
√

2

π
(3.2.17)

If we set λB = rB − r, λC = rC − r and apply the definitions of αB and αC , (3.2.17)
becomes
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0 =

[
−rV̂ + sF

(
−V̂ + − RB V̂

− − CB
∣∣∣−V̂ + V̂ + + RB V̂

−
∣∣∣)− + λB

(
−V̂ + V̂ + + RB V̂

−
)

+ λC

(
−V̂ +RC V̂

+ + V̂ −
)
− r

(
CB

∣∣∣−V̂ + V̂ + + RB V̂
−
∣∣∣ )− ∂V̂

∂S
S (γS − qS)

+
∂V̂

∂t
+

1

2
σ2S2∂

2V̂

∂S2

]
dt− CS

∣∣∣∣∣∂2V̂

∂S2

∣∣∣∣∣ σ S2
√
dt

√
2

π

− CC

∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣ σ S√dt
√

2

π
(3.2.18)

The absolute value that involves the transaction costs due to the own bonds purchase can
be reduced by noting that when V̂ ≥ 0, its value is 0 and when V̂ < 0 is equal to (RB − 1) V̂ .
Hence,

∣∣∣−V̂ + V̂ + + RB V̂
−
∣∣∣ = (RB − 1) V̂ − (3.2.19)

Using this reduction in the minimum function that is multiplied by sF , we get that

(
−V̂ + − RB V̂

− − CB
∣∣∣−V̂ + V̂ + + RB V̂

−
∣∣∣)− =

(
−V̂ + − RB V̂

− − CB (RB − 1) V̂ −
)−

=
(
−V̂ + − V̂ − [RB − CB (RB − 1)]

)−
=

{
−V̂ if V̂ ≥ 0

0 if V̂ < 0

= −V̂ +. (3.2.20)

Thus, by implementing (3.2.20) in (3.2.18), we get

0 =− rV̂ − sF V̂ + + λB

(
−V̂ + V̂ + + RB V̂

−
)

+ λC

(
−V̂ +RC V̂

+ + V̂ −
)

− r CB (RB − 1) V̂ − − ∂V̂

∂S
S (γS − qS) +

∂V̂

∂t
+

1

2
σ2S2∂

2V̂

∂S2

− σ S2

√
2

π dt

(
CS

∣∣∣∣∣∂2V̂

∂S2

∣∣∣∣∣ + S−1CC

∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣
)

(3.2.21)

If we introduce the parabolic operator At as

At ≡
1

2
σ2S2∂

2V̂

∂S2
+
∂V̂

∂S
S (qS − γS) (3.2.22)
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then it follows that V̂ is the solution of

0 =
∂V̂

∂t
+AtV̂ − (λB + λC + r) V̂ + (λB + λC RC − sF ) V̂ +

+ (λB RB + λC − r (RB − 1) CB) V̂ −

− σ S2

√
2

π dt

(
CS

∣∣∣∣∣∂2V̂

∂S2

∣∣∣∣∣ + S−1CC

∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣
)

(3.2.23)

Looking forward to compare (3.2.23) with equation 26 from Ref [13], we rearrange the
terms that involve V̂ , V̂ + and V̂ − and obtain the following nonlinear parabolic PDE

∂V̂

∂t
+AtV̂ − r V̂ = sF V̂

+ + λC (1−RC) V̂ + + λB (1−RB) V̂ − − r (1−RB) CB V̂
−

+σ S2

√
2

π dt
CS

∣∣∣∣∣∂2V̂

∂S2

∣∣∣∣∣ + σ S

√
2

π dt
CC

∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣ .
(3.2.24)

The first three terms on the right hand side of (3.2.24) are equal to the nonlinear terms
of the original model. The inclusion of the transaction costs in the hedging strategy brings
to the model three new terms:

• The fourth term in the right hand side of (3.2.24) corresponds to the amount of cash
that is not invested at r rate when considering the surplus held by the seller after the
purchase of its own bonds as it is shown in (3.2.4).

• The fifth term is the effect of the transaction costs due to buying or selling δ assets of
S. It shall be noted that the term is equal to one find in Leland’s standard approach.

• The sixth term is the effect of the transaction costs due to shorting the counterparty
bond.

If we want to compare (3.2.23) with Leland’s notation, we can define the modified volatility
as

σ̂2 = σ2

(
1−

√
2

π dt

CS
σ

sgn

(
∂2V̂

∂S2

))
(3.2.25)

and noting that
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∣∣∣∣∣RC ∂V̂∂S
+

+
∂V̂

∂S

−

− ∂V̂

∂S

∣∣∣∣∣ =

{∣∣∣(1−RC) ∂V̂
∂S

∣∣∣ if V̂ ≥ 0

0 if V̂ < 0

= (1−RC)

∣∣∣∣∣ ∂V̂∂S
+
∣∣∣∣∣ (3.2.26)

we obtain the following differential equation

∂V̂

∂t
+

1

2
σ̂2 S2 ∂

2V̂

∂S2
+
∂V̂

∂S
S (qS − γS)− r V̂ = sF V̂

+ + λC (1−RC) V̂ +

+ λB (1−RB) V̂ − − r (1−RB) CB V̂
− + σ S

√
2

π dt
CC (1−RC)

∣∣∣∣∣ ∂V̂∂S
+
∣∣∣∣∣ (3.2.27)

Remark 3.2.2. The left-hand side of equation (3.2.27) is effectively a Black-Scholes operator
with a volatility parameter σ̂, a dividend yield γS and a financing cost (different to the risk-
free interest rate) qS . The right-hand side of the equation contains the nonlinear terms that
arises from considering the existence of transaction costs and default risk. The inclusion of
these ’extra’ costs can be thought as a perturbation to the original model. By assessing the
magnitude of the parameters of each term, it can be noted that they are indeed small. Hazard
rates, recovery rates and interest rates are always below one and the transaction costs per
unit of asset can be modeled between 0.025 to 0.04 as it is done in Ref [33].

3.3 Existence of solution of the PDE

3.3.1 Preliminaries

We finish Section 3.2 by presenting the PDE that models the price of a financial contract
between two parties B and C with an underlying S allowing probability of default and con-
sidering the correspondent transaction costs in the replication strategy. Equation (3.2.27)
shows that the PDE has nonlinear terms involving different minimum and maximum func-
tions. Then, we are going to present the Sobolev spaces in which we are going to search for
a weak solution of the PDE. Let us recall the definitions presented in Section 1.2.1 to define
the Sobolev space and the correspondent norm. Let Ω be a bounded open set, Ω ⊂ R and
ΩT = Ω× (0, T ). Let 1 ≤ p ≤ ∞ and k ∈ N. We define the following Sobolev space

W 2k,k
p (ΩT ) =

{
u ∈ Lp (ΩT ) |Dα∂βt u ∈ Lp (ΩT ) , 1 ≤ |α|+ 2β ≤ 2k

}
(3.3.1)

where Dα∂βt u is the weak partial derivative of u. These spaces are actually Banach spaces
when assigning the following norms
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‖u‖
W 2k,k

p (ΩT )
=

∑
0≤|α|+2β≤2k

∥∥∥Dα∂βt u
∥∥∥
Lp(Ω)

. (3.3.2)

One important consideration regarding the solution of equation (3.2.27) is that we are
going to look specifically for convex solutions. This type of problems refer to any derivative
whose payoff correspond to a convex function as it could be an European option call. Hence,
the modified volatility defined in (3.2.25) is changed to

σ̂2 = σ2

(
1−

√
2

π dt

CS
σ

)
. (3.3.3)

Also, we are going to apply the change of variables x = log (S) and τ = T − t. We define
the parabolic operator L and the nonlinear operator N as

LV = − ∂V
∂τ

+
1

2
σ̂2 ∂

2V

∂x2
+
∂V

∂x

(
qS − γS −

1

2
σ̂2

)
− r V

N V = V + [sF + λC (1−RC)] + V − (λB − r CB) (1−RB) + σ

√
2

π dt
CC (1−RC)

∣∣∣∣ ∂V∂x +
∣∣∣∣

such as the problem reads as

L V̂ (τ, x) = N V̂ (τ, x) in Ω× [0, T ]

V̂ (0, x) = g (x) in Ω (3.3.4)

V̂ (τ, x) = f (x) in ∂Ω× (0, T ) .

where g (x) is the initial condition (i.e. the payoff of the derivative) and f (x) is the
boundary condition. For example, we define the conditions for an European call option as

g (x) = (exp (x)−K)+ ,

f (x) =

{
0 if x→ 0

exp (x) if x→∞.

In order to find a solution of problem (3.3.4), we define an operator T : C1,0
(
Ω̄
)
→

C1,0
(
Ω̄
)

such that T (u) = v, where v ∈ W 2,1
p is the unique solution of the problem Lv = Nu.

Our objective is to find a fixed point of the operator T which at the same time will be the
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solution of problem (3.3.4). We will set three conditions that the parameters of the model
must fulfill to assess the existence of a convex solution.

The first condition is required to define a well-posed equation. As it is explained in Ref
[33], the modified volatility shown in equation (3.3.3) must be positive. This can be addressed
by setting a lower bound for the volatility parameter as it is seen below

σ >

√
2

π dt
CS (3.3.5)

The second one is a sufficient condition which is required to find a fixed point of the
operator T . We first recall c as a positive constant which depends only of the domain which
will be defined below. Then, the following inequality must remain valid

c |Ω|1/p
(

[sF + λC (1−RC)] + 2 (λB − r CB) (1−RB) + σ

√
2

π dt
CC (1−RC)

)
< 1.

(3.3.6)

Given all the parameters of the model set, this assumption can be rewritten in terms of
an upper bound for the volatility parameter

σ <
1− c |Ω|1/p ([sF + λC (1−RC)] + 2 (λB − r CB) (1−RB))

c |Ω|1/p
√

2
π dt CC (1−RC)

(3.3.7)

The third and last condition is required to prove that the solution found is indeed convex.
For this reason, the stock growth rate under the risk neutral measure has to be bounded.
This condition reads as

qS − γS < M (3.3.8)

with

M = max

(
r1 + σ S

√
2

π dt
CC (1−RC) , r2

)
,

where r1 = r − [sF + λC (1−RC)] and r2 = r − (λB − rCB) (1−RB).

Hence, the main theorem of this Section reads as follows.

Theorem 3.3.1. Suppose that assumptions (3.3.5), (3.3.7) and (3.3.8) are valid, that both
the initial and boundary conditions belong to the W 2,1

p space and the initial condition is a
convex function. Then, the problem (3.3.4) admits at least one solution.
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3.3.2 Proof of Theorem 3.3.1

This Section covers all the steps required to prove Theorem 3.3.1. The main idea of the proof
of Theorem 3.3.1 is to apply the Schauder fixed point theorem, presented previously in Section
1.2.3, on the operator T . Given K a nonempty convex subset of Ω we have to check that the
operator T is a compact continuous mapping of K into itself such that T (K) ⊂ K.

To begin with the proof of Theorem 3.3.1, we first recall Theorem 7.32 from Ref [34] which
not only assures that the operator T is well defined but also provides a lower estimate for Lu.

Theorem 3.3.2. Suppose Ω ⊂ Rn+1 and let p > 1, p (1− α) < 1 and L a parabolic operator
with coefficients satisfying

|bi| ≤ B , |c| ≤ c1

|aij (X)− aij (Y ) | ≤ w (|X − Y |) .

Then, for any φ ∈ W 2,1
p and any f ∈ Lp (Ω), there is a unique solution of Lu = f in Ω,

u = φ in PΩ. Moreover, u satisfies the estimate

‖u‖p + ‖Du‖p + ‖D2u‖p + ‖ut‖p ≤ C
(
‖f‖p + ‖φ‖p + ‖Dφ‖p + ‖D2φ‖p + ‖φt‖p

)
(3.3.9)

In this Theorem the parabolic operator L is defined as

Lu = −ut + aijDiju+ biDiu+ cu.

Moreover, α ∈ (0, 1) such that PΩ ∈ H1+α where the parabolic boundary PΩ is defined
to be the set of all points x0 ∈ ∂Ω such that for any ε > 0, the cylinder Q (§′, ε) contains
points not in Ω. In the case that Ω = D × (0, T ) for some D ⊂ RN and T > 0, the parabolic
boundary is the union of the bottom of Ω, BΩ = D × {0}, the side of Ω, SΩ = ∂D × (0, T )
and the corner of Ω, CΩ = ∂D × {0}. Finally, w is defined as a positive, continuous and
increasing function such that w (0) = 0.

By adapting Theorem (3.3.2) to our problem, we get the following lemma

Lemma 3.3.3. Let u ∈ C1,0
(
Ω̄
)
, L be as in Theorem 7.32 from Ref [34] and f := Nu.

Then there exists a unique solution of problem Lv = f in Ω, v = g in {0} × Ω and v = f in
∂Ω × (0, T ). Moreover, there exists C > 0 independent of f such that v satisfies the estimate

‖v‖
W 2,1

p
≤ C

(
‖Lv‖p + ‖f‖

W 2,1
p

+ ‖g‖
W 2,1

p

)
. (3.3.10)
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Proof: The result is obtained by noting the definition of ‖v‖
W 2,1

p
and applying Theorem

3.3.2 with f = Lv. �

This lemma gives us an a priori estimate that let us derive the existence of a fixed point
of T . The following lemma will be useful to address the continuity of the operator T .

Lemma 3.3.4. Let p > N and un ∈ W 2,1
p a bounded sequence such that un → u in W 1,0

p .
Given G (x) = max (x, 0) it follows that

G (un)→ G (u) in Lp

∂G (un)

∂x
→ ∂G (u)

∂x
in Lp (3.3.11)

Proof: The proof of the first statement follows from noting that |G′ (x)| ≤ 1 so then
‖G (un)−G (u)‖p ≤ ‖un − u‖p → 0. To address the second statement, we first note that

∂

∂x
(G ◦ u) =

(
G′ ◦ u

) ∂u
∂x
.

Then, we can rewrite

(
G′ ◦ u

) ∂u
∂x
−
(
G′ ◦ un

) ∂un
∂x

=
(
G′ ◦ u−G′ ◦ un

) ∂u
∂x

+
(
G′ ◦ un

)(∂u
∂x
− ∂un

∂x

)
For the first term, since |G′ (u)−G′ (un)| ≤ 1 it follows that

∣∣∣∣(G′ (u)−G′ (un)
) ∂u
∂x

∣∣∣∣p ≤ ∣∣∣∣∂u∂x
∣∣∣∣p

Then, by dominated convergence theorem

∥∥∥∥(G′ (u)−G′ (un)
) ∂u
∂x

∥∥∥∥p
p

=

∫ ∣∣∣∣(G′ (u)−G′ (un)
) ∂u
∂x

∣∣∣∣p → 0.

To assess the second term, we consider the inclusion W 2,1
p ↪→W 1,0

p to obtain a convergent
subsequence in W 1,0

p . Nonetheless, given that |G′ (un)| ≤ 1, it follows that

∣∣∣∣G′ (un)

(
∂u

∂x
− ∂un

∂x

)∣∣∣∣p ≤ ∣∣∣∣∂u∂x − ∂un
∂x

∣∣∣∣p → 0.

and hence
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∥∥∥∥G′ (un)

(
∂u

∂x
− ∂un

∂x

)∥∥∥∥p ≤ ∥∥∥∥∂u∂x − ∂un
∂x

∥∥∥∥p → 0

�

Given Lemma 3.3.3 and Lemma 3.3.4, we can now address the proof of Theorem 3.3.1.
The first step is to define the constant c of Equation (3.3.7). The constant of imbedding
W 2,1
p ↪→ C1,0 will be set as c1 and the constant obtained from Lemma (3.3.3) with p > 1

will be set as c2 and we will define c = c1c2. The second step is to apply Schauder Fixed
Point theorem on the operator T . We define our invariant subset as K = BR (u0). To apply
Schauder theorem, we have to prove that T is a compact continuous mapping such that
T
(
BR (u0)

)
⊂ BR (u0). Within our proof we will set u0 = 0

Let first see the continuity of the operator T . Let un, u ∈W 2,1
p such that un → u in W 2,1

p .
By recalling Lemma 3.3.3, there exists a constant C > 0 such that

‖Tun − Tu‖W 2,1
p
≤ C ‖LTun − LTu‖p
≤ C ‖N un −N u‖p
≤ C [sF + λC (1−RC)]

∥∥u+
n − u+

∥∥
p

+ C (λB − r CB) (1−RB)
∥∥u−n − u−∥∥p

+ C σ

√
2

π dt
CC (1−RC)

∥∥∥∥∂un∂x +

− ∂u

∂x

+
∥∥∥∥
p

(3.3.12)

By applying Lemma 3.3.4, we know that ‖u+
n − u+‖p → 0 and

∥∥∥∂un∂x + − ∂u
∂x

+
∥∥∥
p
→ 0. The

same lemma is valid by changing the function G into G (x) = min (x, 0) so that ‖u−n − u−‖p →
0.

The next step is to address the compactness of the operator T in the whole space. Let S
a bounded subset of C1,0. By the definition of T , T (S) ⊂ W 2,1

p and, as p > 1, the compact
inclusion W 2,1

p ↪→ C1,0 guarantees that T (S) ⊂ C1,0. Hence, it suffices to prove that T (S) is
bounded for the W 2,1

p norm. Let v ∈ S and let us use Lemma 3.3.3 to see that

‖Tv‖
W 2,1

p
= ‖u‖

W 2,1
p
≤ C

(
‖Lu‖p + ‖f‖

W 2,1
p

+ ‖g‖
W 2,1

p

)
.

≤ C
(
‖N v‖p + ‖f‖

W 2,1
p

+ ‖g‖
W 2,1

p

)
.

(3.3.13)

Hence, the result follows from the bounds of both initial and boundary conditions and the
bound of v.

Further, let R be a positive number such that
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R >
‖f‖

W 2,1
p

+ ‖g‖
W 2,1

p

1− c |Ω|1/p
(

[sF + λC (1−RC)] + 2 (λB − r CB) (1−RB) + σ
√

2
π dt CC (1−RC)

)
(3.3.14)

and u such that ‖u‖C1,0 ≤ R. Then, there exists a constant c1 > 0 given by the embedding

W 2,1
p ↪→ C1,0 so that

‖Tu‖C1,0 ≤ c1 ‖Tu‖W 2,1
p
. (3.3.15)

Given the inequality presented in equation (3.3.15), we can use the result of Lemma 3.3.3.
Hence, there exists a constant c2 > 0 such that

‖Tu‖C1,0 ≤ c1 c2

(
‖Nu‖p + ‖f‖

W 2,1
p

+ ‖g‖
W 2,1

p

)
. (3.3.16)

By recalling (3.3.4), the nonlinear term N is bounded by

‖Nu‖p ≤ [sF + λC (1−RC)]
∥∥u+

∥∥
p

+ (λB − r CB) (1−RB)
∥∥u−∥∥

p

+ σ

√
2

π dt
CC (1−RC)

∥∥∥∥∂u∂x+
∥∥∥∥
p

< [sF + λC (1−RC)] |Ω|1/pR + (λB − r CB) (1−RB) |Ω|1/p 2R

+ σ

√
2

π dt
CC (1−RC) |Ω|1/pR

< k1R (3.3.17)

using that ‖u‖C1,0 ≤ R where

k1 = |Ω|1/p
(

[sF + λC (1−RC)] + (λB − r CB) (1−RB) 2 + σ

√
2

π dt
CC (1−RC)

)
.

By applying (3.3.17) in (3.3.16), we get that

‖Tu‖C1,0 ≤ c1 c2 k1R+ c1 c2

(
‖f‖

W 2,1
p

+ ‖g‖
W 2,1

p

)
.

< R (3.3.18)
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which follows from the assumption (3.3.7) by setting c = c1 c2 and the lower bound of R.

The last step of the proof is to show that the solution is indeed convex. In order to confirm
this assumption, we can analyze the similarity between equation (3.2.27) and a Black-Scholes
equation with dividends and notice that given a convex initial condition, the solution would
remain convex. We analyze separately when V̂ is positive or negative. When the solution is
positive, equation (3.2.27) reduces to

∂V̂

∂t
+

1

2
σ̂2 S2 ∂

2V̂

∂S2
+
∂V̂

∂S
S (qS − γS)− r V̂ = [sF + λC (1−RC)] V̂ + σ S

√
2

π dt
CC (1−RC)

∣∣∣∣∣∂V̂∂S
∣∣∣∣∣ .

By rearranging terms and defining r1 = r−[sF + λC (1−RC)] the equation above becomes

∂V̂

∂t
+

1

2
σ̂2 S2 ∂

2V̂

∂S2
+
∂V̂

∂S
S

(
qS − γS − sgn

(
∂V̂

∂S

)
σ S

√
2

π dt
CC (1−RC)

)
− r1 V̂ = 0

(3.3.19)

When the solution is negative, equation (3.2.27) reduces to

∂V̂

∂t
+

1

2
σ̂2 S2 ∂

2V̂

∂S2
+
∂V̂

∂S
S (qS − γS)− r V̂ = (λB − rCB) (1−RB) V̂ .

By rearranging terms and defining r2 = r − (λB − rCB) (1−RB) the equation above
becomes

∂V̂

∂t
+

1

2
σ̂2 S2 ∂

2V̂

∂S2
+
∂V̂

∂S
S (qS − γS)− r2 V̂ = 0 (3.3.20)

Equation (3.3.19) and (3.3.20) can be thought as a Black-Scholes equation with dividend
yield γS and free-risk interest rate r1 and r2 respectively. Moreover, the condition stated in
(3.3.8) can be used to derive an upper bound for qS − γS . If qS − γS < M , we see that the
growth rate of the stock under the risk-free measure is lower than the free-risk interest rate.
This dynamic is the one expected for a Black-Scholes model with dividends. equation (3.2.27).
As the initial condition of the problem is indeed convex the solution V̂ is also convex.

3.4 Numerical

3.4.1 Numerical framework

In this Section we are going to develop a numerical framework to solve the problem defined
in (3.3.4) by applying a forward Euler method. Hence, we recall the nonlinear problem
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L V̂ (τ, x) = N V̂ (τ, x) in Ω× [0, T ]

V̂ (0, x) = g (x) in Ω (3.4.1)

V̂ (τ, x) = f (x) in ∂Ω× (0, T ) .

with L and N defined in (3.3.4). For numerical convenience, we approximate the original
smooth domain by a discrete one Ω̂T ⊂ [a, b] × [0, T ], setting a and b in order to cover a
set of feasible logarithmic stock prices. The step of the temporal variable is uniformly set as
∆τ = T/Tx being Tx the number of grid points in the τ - direction. For the spatial variable,
we are going to apply a non-uniform grid where the spacing is fine near the strike and coarse
away from the strike. In Ref [43], the following grid is proposed

xi = x∗ + α sinh

(
c2
i

N
+ c1

(
1− i

N

))
(3.4.2)

where

c1 = sinh−1

(
x− − x∗

α

)
c2 = sinh−1

(
x+ − x∗

α

)
.

This is a transformation that maps the interval [0, 1] into [x−, x+] by concentrating the
points near x∗. The value of α sets how non-uniform the grid will be and N to be the amount
of points within the grid. In our problem we set x∗ = K and [x−, x+] accordingly to cover
all the possible logarithmic prices. Hence, we define the solution to the m-temporal step as

V̂ m
i = V̂ (xi,m∆τ) where 1 ≤ i ≤ N and 1 ≤ m ≤ Tx. We also define Û = max

(
V̂ , 0

)
for

numerical notation convenience.

To derive the expression of the numerical framework we follow Ref [9] and Ref [21] in which
this grid had been applied. By following the same steps, we obtain that the discretization of
the first and second spatial derivatives are given by

∂V̂

∂x
=

V̂ m
i+1 − V̂ m

i

xi+1 − xi
,

∂2V̂

∂x2
= h+

i

V̂ m
i+1 − V̂ m

i

xi+1 − xi
− h−i

V̂ m
i − V̂ m

i−1

xi − xi−1

where hi = xi − xi−1 and
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h+
i =

2

hi+1 (hi+1 + hi)
,

h−i =
2

hi (hi+1 + hi)
.

Given that the temporal step is set uniformly, the finite difference framework is defined
as below

L V̂ = −

(
V̂ m+1
i − V̂ m

i

∆τ

)
+

1

2
σ̂2
[
h+
i

(
V̂ m
i+1 − V̂ m

i

)
− h−i

(
V̂ m
i − V̂ m

i−1

)]
+
V̂ m
i+1 − V̂ m

i

xi+1 − xi(
qS − γS −

1

2
σ̂2

)
− r V̂ m

i . (3.4.3)

N V̂ = max
(
V̂ m
i , 0

)
[sF + λC (1−RC)] + min

(
V̂ m
i , 0

)
(λB − r CB) (1−RB)

+ σ

√
2

π dt
CC (1−RC)

∣∣∣∣∣ Ûmi+1 − Ûmi
xi+1 − xi

∣∣∣∣∣ . (3.4.4)

By rearranging and combining terms we obtain the following iterative process

V̂ m+1
i = V̂ m

i

(
1 − σ̂2 ∆τ

2

(
h+
i + h−i

)
− ∆τ

xi+1 − xi

(
qS − γS −

σ̂2

2

)
− r∆τ

)
+ V̂ m

i−1

(
σ̂2 ∆τ

2
h−i

)
+ V̂ m

i+1

(
σ̂2 ∆τ

2
h+
i +

∆τ

xi+1 − xi

(
qS − γS −

σ̂2

2

))
−∆τ max

(
V̂ m
i , 0

)
[sF + λC (1−RC)]

−∆τ min
(
V̂ m
i , 0

)
(λB − r CB) (1−RB)− ∆τ σ

√
2

π dt
CC (1−RC)

∣∣∣∣∣ Ûmi+1 − Ûmi
xi+1 − xi

∣∣∣∣∣ .
(3.4.5)

If we let V̂ 0
i = g (xi), this framework can be used to find the solution of the problem (3.4.1)

at each time step m.

3.4.2 Numerical results

In this Section we analyze the behavior of the option price for an European call under different
scenarios. We perform a sensitivity analysis on the volatility, free-risk interest rate, transaction
costs, recovery rates and hazard rates by stressing its values. Nonetheless, we compare our
results with the ones obtained by the original model proposed in Ref [13] and calculate how the
transaction costs impact the final CVA value. To further analyze the behavior of the option
price, we calculate its derivatives with respect to certain parameters. This derivatives are
known as Greeks and consist of Delta (derivative with respect to the option price), Gamma
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(second derivative with respect to the option price), Vega (derivative with respect to the
volatility) and Rho (derivative with respect to the interest rate).

For notation purposes we recall BK to the original model and BKTC the model with
transaction costs. Also, for each scenario, the parameters set for both models are defined in
the caption of each figure and results are obtained at time τ = T . Within each figure, two
types of vertical lines are included. The grey-shaded lines correspond to the non-uniform xi
grid defined in Section 3.4.1 and the black dashed-line represents the strike value.

Delta and Gamma

Figure (3.1) presents the two derivatives with respect to the option price, which are Delta and
Gamma. Delta shows a similar behavior to an European call. For that vanilla option, Delta’s
formula correspond to a normal cumulative function. When including CVA and transaction
costs, it can be seen that when the option is deep out-of-the-money, Delta is near zero which
implies that the portfolio defined in Equation (3.2.1) needs no shares of S to hedge the option.
As the option gets at-the-money, Delta grows approximately up to 0.5. The option is more
sensitive to changes in the spot price so then almost 50% of the hedging portfolio has to be
covered with shares of S. This trend continues to converge to a Delta equal to 1 when the
option gets deeper in-the-money. At this point, the option price changes at the same rate
with respect to the spot price and the hedging portfolio has to be only long on shares of S to
cover its hedging purpose.

As Gamma represents the second derivative of the option price with respect to the spot
price, its maximum is actually reached when the option is at-the-money and diminishes when
the option go either in-the-money or out-of-the-money. This behavior is again similar to the
one seen on a vanilla European call and shows to us how sensitive is Delta to movements in
the spot price.
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Figure 3.1: CS = 0.002, r = 0.05, qS = 0.05, γS = 0.03, σ = 0.1, Sf = 0, λB = 0.05,
λC = 0.01, RB = 0.4, RC = 0.4, CB = 0.001, CC = 0.001, dt = 1/261, ∆τ = 1/261, K = 8.
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Volatility

Figure (3.2a) presents the sensitivity of the CVA to changes in the volatility parameter. The
figure shows that the strike price serves as threshold where the behavior of the CVA changes.
When the option is out-of-the money (S < K), higher volatility produces higher CVA (more
negative). However, when the option is in-the-money (S > K), the convexity changes leading
to higher CVA as the volatility decreases. Figure (3.2b) expands these results over the entire
set of possible volatilities.
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(a) BKTC CVA for different volatilities
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(b) BKTC CVA by Spot Price and Volatility

Figure 3.2: CS = 0.002, qS = 0.05, γS = 0.03, r = 0.05, Sf = 0, λC = 0.01, RC = 0.4,
λB = 0.05, RB = 0.4, CB = 0.001, CC = 0.001, dt = 1/261, ∆τ = 1/261, K = 8.

In Figure (3.3a), the sensitivity of the option price with respect to different volatility
parameters is presented. Under the usual Black-Scholes framework, it is expected to get
higher option prices as volatility increases. This pattern is confirmed up to a certain spot
price. Under our framework, as the option gets deeper in-the-money, Delta (Figure (3.1a)),
which represents the amount of shares to buy in the replicant strategy, tends to one and the
impact of the transaction costs increase by generating a decrease in the option price. This
behavior can be confirmed by assessing the first derivative of the option price with respect
to the volatility (usually known as Vega). In Figure (3.4), Vega is split with respect to the
moneyness of the option. Figure (3.4a) shows that, when the option is out-of-the-money,
Vega is positive as it is under the Black-Scholes model. Further, Figure (3.4b) demonstrate
that not only Vega becomes negative as the option gets in-the-money but also that its sign
changes in the same spot price as seen in Figure (3.3a). Hence, if we consider the impact of
the volatility not only in the parabolic side of the PDE but also in the nonlinear term , it is
expected to find these relationship between the volatility parameter and the option price.

Interest Rate

Figure (3.5a) presents the sensitivity of the CVA to changes in the interest rate. Figure
(3.5b) expand this results to the entire interval of Spot Log prices. Both figures show that
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(a) BKTC Option Price for different volatilities
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Figure 3.3: CS = 0.002, qS = 0.05, γS = 0.03, r = 0.05, Sf = 0, λC = 0.01, RC = 0.4,
λB = 0.05, RB = 0.4, CB = 0.001, CC = 0.001, dt = 1/261, ∆τ = 1/261, K = 8.
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Figure 3.4: CS = 0.002, r = 0.05, qS = 0.05, γS = 0.03, σ = 0.1, Sf = 0, λB = 0.05,
λC = 0.01, RB = 0.4, RC = 0.4, CB = 0.001, CC = 0.001, dt = 1/261, ∆τ = 1/261, K = 8.
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the CVA decreases as the interest rate increases and the its size is larger when the option is
deep in-the-money.
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(a) BKTC CVA for different interest rates.
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(b) BKTC CVA by Spot price and interest rate.

Figure 3.5: CS = 0.002, qS = 0.05, γS = 0.03, σ = 0.1, Sf = 0, λC = 0.01, RC = 0.4,
λB = 0.05, RB = 0.4, CB = 0.001, CC = 0.001, dt = 1/261, ∆τ = 1/261, K = 8.

Figure (3.6a) shows that the option price as decreasing monotonic function with respect
to the interest rate. This results is confirmed by analyzing the first derivative of the option
price with respect to the interest rate presented in figure (3.7), also known as Rho. When the
option is out-of-the-money, Rho is approximately zero. But as the option gets in-the-money,
it is observed a negative slope. This result is counter-intuitive by considering that, under
Black-Scholes model, the derivative is always positive. This discrepancy can be assessed by

noting that, in equation (3.2.27), the terms that go with ∂V̂
∂S S are equal to (qS − γS) instead

of (r − γS). Given that under the BKTC model, qS is being modeled as a constant function,
the positive sensitivity of the option to the interest rate is not observed. In order to match
the expected behavior, an improvement of the modeling approach of the financing cost and
its relationship with the interest rate has to be done.

Transaction Costs

Figure (3.8) presents the variation on the CVA due to changes in the transaction costs that
arise of trading δ amount of shares S and αC amounts of bond PC . By recalling equation
(3.2.27) it can be noted that an increase in CS leads to a decrease in the modified volatility.
We actually can assume that the modified volatility behaves similarly to the actual volatility,
so that the analysis done in Section 3.4.2 can be applied. By considering the pattern showed
in Figure (3.8) it can be seen that it is in line with the behavior of the CVA when varying
the volatility in Figure (3.8a). In both cases, the convexity changes near the strike value due
to the same issues presented in the aforementioned Section.

On the other side, the presence of CC in Equation (3.2.27) actually shows that larger costs
generates a lower option price. Also, as transaction costs are multiplied by Delta, the gap
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(a) BKTC Option Price for different interest rates
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Figure 3.6: CS = 0.002, qS = 0.05, γS = 0.03, σ = 0.1, Sf = 0, λC = 0.01, RC = 0.4,
λB = 0.05, RB = 0.4, CB = 0.001, CC = 0.001, dt = 1/261, ∆τ = 1/261, K = 8.

widens as the option gets deeper in-the-money. This is the pattern that is observed in Figure
(3.8b).

Recovery Rate and Hazard Rate

In Figure (3.9) the sensitivity of the CVA due to changes in the recovery rate of the counter-
party bond is presented. Given that the recovery rate determines the amount of instrument
that can be recovered in case of a default, the term (1−RC) estimates the loss that would
arise in case of default. It is expected that higher recovery rates imply lesser losses and then
lesser CVA. Figure (3.9a) shows this monotonic relationship which is also in line with the
behavior seen in Equation (3.2.27).

The hazard rate of the counterparty bond measures the likelihood that the bond will
default at a certain point of time. Hence, if the hazard rate increases, the probability of
default of the bond also increases. Then, it is expected to see a higher CVA value when
deriving the option price. Figure (3.10a) presents the CVA value for different hazard rates
where the expected behavior is noticed.

3.5 Conclusion

Chapter 3 was dedicated to the development of a pricing model that considered at the same
type the presence of transaction costs in the replication strategy and the probability of default
of both the issuer and counterparty of the financial contract.

In Section 3.2 we presented all the steps required to develop the correspondent market
model. We followed the seminal work of Ref [13] in which a replicant portfolio is created. We
adapted the framework to consider the existence of constant transactions costs when buying or
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selling the underlying asset and both issuer and counterparty bonds. We obtained a parabolic
PDE with nonlinear terms that arose from the presence of these costs.

In Section 3.3 we transformed the original equation and provide three sufficient conditions
that the parameters must fulfilled in order to assure the existence of a convex solution. From
a financial perspective, these conditions implied that the volatility parameter couldn’t be
either too little or too high and that the stock-rate growth under the risk-neutral measure
had to be bounded. It is important to note that these conditions are in-line with a standard
state of an asset so that the model’s proof can be used under many different scenarios. To
prove the existence of the solution, we proposed a fixed-point approach. Using the Schauder
Fixed-Point theorem, we created an operator T and a defined a subset K such that T is a
compact continuous mapping of K into itself with T (K) ⊂ K. Finally, we showed that the
solution was in fact convex by noting that on each time step, the equation could be reduced
to a Black-Scholes equation with dividend yield.

In Section 3.4 we applied an Euler scheme to find a solution of the original problem. We
used a non-uniform grid where the spacing was fine near the strike and coarse away from the
strike. We adapted the Euler method to consider this grid and defined the correspondent
iterative method to obtain the desired solution. We priced an European call under different
scenarios and analyzed the most important Greeks and different sensitivities of the price when
changing all the different parameters of the equation. The numerical results showed that
Delta and Gamma behave similarly as in a plain vanilla option but Vega and Rho presented
differences in terms of the usual behavior. We analyzed that the presence of transaction costs
make an impact in the way volatility and risk-free interest rate affects the option price. We
also realized that the spot financing cost qS has to be linked with the risk-free interest rate
to assure consistent results.
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Figure 3.8: r = 0.05, qS = 0.05, γS = 0.03, σ = 0.1, Sf = 0, λC = 0.01, RC = 0.4, λB = 0.05,
RB = 0.4, CB = 0.001, dt = 1/261, ∆τ = 1/261, K = 8. CC = 0.001 for (3.8a) and
CS = 0.002 for (3.8b).

3.6 Resumen del caṕıtulo

El Caṕıtulo 3 presenta el desarrollo del modelo de valuación de opciones financieras que
considera al mismo tiempo la existencia de costos de transacción en la estrategia de replicación
como aśı tambien la probabilidad de default de tanto el emisor del contrato como de su
contraparte.

En la Sección 3.2 desarrollamos todos los pasos necesarios para generar el modelo de val-
uación siguiendo el reconocido trabajo de Ref [13]. Adaptamos su esquema de valuación para
permitir la presencia de costos de transacción constantes al comprar o vender el activo subya-
cente, el bono del emisor o el de su contraparte en la estrategia de replicación. Aśı, obtuvimos
una ecuación diferencial parabólica con terminos no lineales producto de la inclusión de los
mencionados costos de transacción.

En la Sección 3.3 transformamos la ecuación original mediante cambios de variables y
determinamos tres condiciones suficientes para los parámetros del modelo para asi poder
asegurar la existencia de una solución convexa. Desde una perspectiva financiera, estas condi-
ciones implican que el parámetro de volatilidad no puede ser ni muy chico ni muy grande y
que la tasa de crecimiento bajo la medida libre de riesgo de el activo subyacente debe estar
acotada. Es importante notar que las tres condiciones corresponden a estados naturales del
activo subyacente para lo cual estas condiciones resultan ser válidas en distintos escenarios.
Para probar la existencia de solución, propusimos un enfoque de punto fijo utilizando el teo-
rema de punto fijo de Schauder. Finalmente, mostramos que la solución es efectivamente
convexa notando que en cada paso temporal la ecuación puede ser reducida a una ecuación
de Black-Scholes con tasa de dividendos.

En la Sección 3.4 desarrollamos un esquema numérico de tipo Euler para encontrar una
solución aproximada del problema original. Usamos una malla no uniforme donde el espaciado
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Figure 3.9: CS = 0.002, r = 0.05, qS = 0.05, γS = 0.03, σ = 0.1, Sf = 0, λC = 0.01,
λB = 0.05, RB = 0.4, CB = 0.001, CC = 0.001, dt = 1/261, ∆τ = 1/261, K = 8
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Figure 3.10: CS = 0.002, r = 0.05, qS = 0.05, γS = 0.03, σ = 0.1, Sf = 0, λB = 0.05,
RB = 0.4, RC = 0.4, CB = 0.001, CC = 0.001, dt = 1/261, ∆τ = 1/261, K = 8.

Page 99



Chapter 3 Section 3.6

es mas fino cerca del strike y mas grueso fuera del mismo. Adaptamos el método de Euler
para considerar esta malla y definimos el correspondiente método iterativo para encontrar la
solución deseada. Dado el esquema desarrollado, valuamos una opcion de tipo call europea
bajo diversos escenarios. Los resultados numéricos mostraron que tanto Delta como Gamma se
comportan similarmente a la opción financiera del modelo estandar. Sin embargo, la diferencia
se observa al analizar Vega and Rho notando que la presencia de costos de transacción impacta
en la forma en la que las volatilidades y la tasa de interés libre de riesgo afectan el precio
de la opción. Además notamos que el parámetro de costo de financiación tiene que estar
relacionado con la tasa de interés libre de riesgo para obtener resultados consistentes.

Page 100



Bibliography

[1] Robert A Adams and John JF Fournier, Sobolev Spaces, vol. 140, Academic Press, 2003.

[2] Shahram Alavian, Jie Ding, Peter Whitehead, and Leonardo Laudicina, Counterparty
Valuation Adjustment (CVA), Available at SSRN: https://ssrn.com/abstract=1310226
or http://dx.doi.org/10.2139/ssrn.1310226 (2008).

[3] William F Ames, Numerical methods for partial differential equations, Academic Press,
2014.

[4] P Amster, CG Averbuj, MC Mariani, and D Rial, A Black–Scholes option pricing model
with transaction costs, Journal of Mathematical Analysis and Applications 303 (2005),
no. 2, 688–695.

[5] Pablo Amster, Topological methods in the study of boundary value problems, Springer,
2014.

[6] Pablo Amster and Andres P Mogni, Adapting the CVA model to Leland’s framework,
arXiv preprint arXiv:1802.04837 (2018).

[7] , On a pricing problem for a multi-asset option with general transaction costs,
arXiv preprint arXiv:1704.02036v2 (2018).

[8] Martin Baxter and Andrew Rennie, Financial calculus: an introduction to derivative
pricing, Cambridge University Press, 1996.
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